Home
Class 12
PHYSICS
For a body, angular velocity (vec(omega)...

For a body, angular velocity `(vec(omega)) = hat(i) - 2hat(j) + 3hat(k)` and radius vector `(vec(r )) = hat(i) + hat(j) + vec(k)`, then its velocity is :

A

`-5hat(i) + 2hat(j) + 3hat(k)`

B

`-5hat(i) + 2hat(j) - 3hat(k)`

C

`-5hat(i) - 2hat(j) + 3hat(k)`

D

`-5hat(i) - 2hat(j) - 3hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the velocity vector \( \vec{V} \) of a body given its angular velocity \( \vec{\omega} \) and radius vector \( \vec{r} \), we can use the relation: \[ \vec{V} = \vec{\omega} \times \vec{r} \] ### Step 1: Identify the vectors Given: - Angular velocity vector \( \vec{\omega} = \hat{i} - 2\hat{j} + 3\hat{k} \) - Radius vector \( \vec{r} = \hat{i} + \hat{j} + \hat{k} \) ### Step 2: Set up the cross product The cross product can be computed using the determinant of a matrix formed by the unit vectors and the components of the vectors: \[ \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 3: Calculate the determinant To compute the determinant, we can expand it as follows: \[ \vec{V} = \hat{i} \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} = (-2)(1) - (3)(1) = -2 - 3 = -5 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} = (1)(1) - (3)(1) = 1 - 3 = -2 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-2)(1) = 1 + 2 = 3 \] ### Step 4: Combine the results Now substituting back into the expression for \( \vec{V} \): \[ \vec{V} = -5\hat{i} - (-2)\hat{j} + 3\hat{k} \] \[ \vec{V} = -5\hat{i} + 2\hat{j} + 3\hat{k} \] ### Final Result Thus, the velocity vector is: \[ \vec{V} = -5\hat{i} + 2\hat{j} + 3\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Enable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

The linear velocity of a rotating body is given by vec(v)= vec(omega)xxvec(r ) , where vec(omega) is the angular velocity and vec(r ) is the radius vector. The angular velocity of a body is vec(omega)= hat(i)-2hat(j)+2hat(k) and the radius vector vec(r )= 4hat(j)-3hat(k) , then |vec(v)| is

The linear velocity of a rotating body is given by vec(v)=vec(omega)xxvec(r) , where vec(omega) is the angular velocity and vec(r) is the radius vector. The angular velocity of a body is vec(omega)=hat(i)-2hat(j)+2hat(k) and the radius vector vec(r)=4hat(j)-3hat(k) , then |vec(v)| is-

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

What is the value of linear velocity, if vec(omega)=3hat(i)-4hat(j)+hat(k) and vec(R)=5hat(i)-6hat(j)+6hat(k) .

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Impeccable
  1. For a body, angular velocity (vec(omega)) = hat(i) - 2hat(j) + 3hat(k)...

    Text Solution

    |

  2. Square of the resultant of two forces of equal magnitude is equal to t...

    Text Solution

    |

  3. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |

  4. The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(...

    Text Solution

    |

  5. Which of the following is incorrect ?

    Text Solution

    |

  6. The minimum number of vectors to give zero resultant is …………………………………....

    Text Solution

    |

  7. Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-ve...

    Text Solution

    |

  8. OF the vectors given below, the parallel vectors are : vec(A) = 6hat...

    Text Solution

    |

  9. If |vec(A) xx vec(B)| = sqrt(3) vec(A).vec(B) then the value of |vec(A...

    Text Solution

    |

  10. For any two vectors vec(A) and vec(B), if vec(A).vec(B) = |vec(A) xx v...

    Text Solution

    |

  11. A particle moves from position 3hat(i) + 2hat(j) - 6hat(k) to 14hat(i)...

    Text Solution

    |

  12. The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat...

    Text Solution

    |

  13. If overset(rarr)A=2 hat i + 3 hat j- hat k and overset(rarr)B=-hat i...

    Text Solution

    |

  14. Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4h...

    Text Solution

    |

  15. Which of the following is a vector quantity ?

    Text Solution

    |

  16. A unit radial vector hatr makes angles of alpha = 30^(@) relative to ...

    Text Solution

    |

  17. What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+...

    Text Solution

    |

  18. Three forces A = (hat(i) + hat(j) + hat(k)), B = (2hat(i) - hat(j) + 3...

    Text Solution

    |

  19. vec(A) is a vector with magnitude A, then the unit vector hat(A) in th...

    Text Solution

    |

  20. Two forces of 12N and 8N act upon a body. The resultant force on the b...

    Text Solution

    |

  21. Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - h...

    Text Solution

    |