Home
Class 12
PHYSICS
The position vectors of points A, B, C a...

The position vectors of points A, B, C and D are :
`vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i) + 5hat(j) + 6hat(k)`
`vec(C ) = 7hat(i) + 9hat(j) + 3hat(k)` and `vec(D) = 4hat(i) + 6hat(j)`
Then the displacement vectors `vec(AB)` and `vec(CD)` are :

A

perpendicular

B

parallel

C

anti-parallel

D

inclined at an angle of `60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the displacement vectors \(\vec{AB}\) and \(\vec{CD}\), we will follow these steps: ### Step 1: Calculate the displacement vector \(\vec{AB}\) The displacement vector \(\vec{AB}\) is given by: \[ \vec{AB} = \vec{B} - \vec{A} \] Substituting the position vectors: \[ \vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k} \] \[ \vec{B} = 4\hat{i} + 5\hat{j} + 6\hat{k} \] Now, performing the subtraction: \[ \vec{AB} = (4\hat{i} + 5\hat{j} + 6\hat{k}) - (3\hat{i} + 4\hat{j} + 5\hat{k}) \] \[ = (4 - 3)\hat{i} + (5 - 4)\hat{j} + (6 - 5)\hat{k} \] \[ = 1\hat{i} + 1\hat{j} + 1\hat{k} \] Thus, \[ \vec{AB} = \hat{i} + \hat{j} + \hat{k} \] ### Step 2: Calculate the displacement vector \(\vec{CD}\) The displacement vector \(\vec{CD}\) is given by: \[ \vec{CD} = \vec{D} - \vec{C} \] Substituting the position vectors: \[ \vec{C} = 7\hat{i} + 9\hat{j} + 3\hat{k} \] \[ \vec{D} = 4\hat{i} + 6\hat{j} \] Now, performing the subtraction: \[ \vec{CD} = (4\hat{i} + 6\hat{j}) - (7\hat{i} + 9\hat{j} + 3\hat{k}) \] \[ = (4 - 7)\hat{i} + (6 - 9)\hat{j} + (0 - 3)\hat{k} \] \[ = -3\hat{i} - 3\hat{j} - 3\hat{k} \] Thus, \[ \vec{CD} = -3\hat{i} - 3\hat{j} - 3\hat{k} \] ### Step 3: Determine the angle between \(\vec{AB}\) and \(\vec{CD}\) To find the angle \(\theta\) between the vectors \(\vec{AB}\) and \(\vec{CD}\), we use the dot product formula: \[ \cos(\theta) = \frac{\vec{AB} \cdot \vec{CD}}{|\vec{AB}| |\vec{CD}|} \] First, we calculate the dot product \(\vec{AB} \cdot \vec{CD}\): \[ \vec{AB} \cdot \vec{CD} = (1\hat{i} + 1\hat{j} + 1\hat{k}) \cdot (-3\hat{i} - 3\hat{j} - 3\hat{k}) \] \[ = (1)(-3) + (1)(-3) + (1)(-3) = -3 - 3 - 3 = -9 \] Next, we calculate the magnitudes of \(\vec{AB}\) and \(\vec{CD}\): \[ |\vec{AB}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] \[ |\vec{CD}| = \sqrt{(-3)^2 + (-3)^2 + (-3)^2} = \sqrt{27} = 3\sqrt{3} \] Now substituting these into the cosine formula: \[ \cos(\theta) = \frac{-9}{\sqrt{3} \cdot 3\sqrt{3}} = \frac{-9}{9} = -1 \] This implies: \[ \theta = 180^\circ \] ### Conclusion Since the angle between \(\vec{AB}\) and \(\vec{CD}\) is \(180^\circ\), the vectors are anti-parallel. ### Final Answer: \(\vec{AB} = \hat{i} + \hat{j} + \hat{k}\) and \(\vec{CD} = -3\hat{i} - 3\hat{j} - 3\hat{k}\) are anti-parallel. ---
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Enable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Impeccable
  1. The position vectors of points A, B, C and D are : vec(A) = 3hat(i) ...

    Text Solution

    |

  2. Square of the resultant of two forces of equal magnitude is equal to t...

    Text Solution

    |

  3. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |

  4. The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(...

    Text Solution

    |

  5. Which of the following is incorrect ?

    Text Solution

    |

  6. The minimum number of vectors to give zero resultant is …………………………………....

    Text Solution

    |

  7. Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-ve...

    Text Solution

    |

  8. OF the vectors given below, the parallel vectors are : vec(A) = 6hat...

    Text Solution

    |

  9. If |vec(A) xx vec(B)| = sqrt(3) vec(A).vec(B) then the value of |vec(A...

    Text Solution

    |

  10. For any two vectors vec(A) and vec(B), if vec(A).vec(B) = |vec(A) xx v...

    Text Solution

    |

  11. A particle moves from position 3hat(i) + 2hat(j) - 6hat(k) to 14hat(i)...

    Text Solution

    |

  12. The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat...

    Text Solution

    |

  13. If overset(rarr)A=2 hat i + 3 hat j- hat k and overset(rarr)B=-hat i...

    Text Solution

    |

  14. Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4h...

    Text Solution

    |

  15. Which of the following is a vector quantity ?

    Text Solution

    |

  16. A unit radial vector hatr makes angles of alpha = 30^(@) relative to ...

    Text Solution

    |

  17. What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+...

    Text Solution

    |

  18. Three forces A = (hat(i) + hat(j) + hat(k)), B = (2hat(i) - hat(j) + 3...

    Text Solution

    |

  19. vec(A) is a vector with magnitude A, then the unit vector hat(A) in th...

    Text Solution

    |

  20. Two forces of 12N and 8N act upon a body. The resultant force on the b...

    Text Solution

    |

  21. Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - h...

    Text Solution

    |