Home
Class 12
PHYSICS
Three vectors vec(A) = 2hat(i) - hat(j) ...

Three vectors `vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k)`, and `vec(C ) = 3hat(i) - 4hat(j) - 4hat(k)` are sides of an :

A

equilateral triangle

B

right angled triangle

C

isosceles triangle

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle formed by the three vectors \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \), we will follow these steps: ### Step 1: Write down the vectors The vectors are given as: - \( \vec{A} = 2\hat{i} - \hat{j} + \hat{k} \) - \( \vec{B} = \hat{i} - 3\hat{j} - 5\hat{k} \) - \( \vec{C} = 3\hat{i} - 4\hat{j} - 4\hat{k} \) ### Step 2: Calculate the magnitudes of the vectors The magnitude of a vector \( \vec{V} = a\hat{i} + b\hat{j} + c\hat{k} \) is given by: \[ |\vec{V}| = \sqrt{a^2 + b^2 + c^2} \] #### Magnitude of \( \vec{A} \): \[ |\vec{A}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] #### Magnitude of \( \vec{B} \): \[ |\vec{B}| = \sqrt{(1)^2 + (-3)^2 + (-5)^2} = \sqrt{1 + 9 + 25} = \sqrt{35} \] #### Magnitude of \( \vec{C} \): \[ |\vec{C}| = \sqrt{(3)^2 + (-4)^2 + (-4)^2} = \sqrt{9 + 16 + 16} = \sqrt{41} \] ### Step 3: Compare the magnitudes Now we have: - \( |\vec{A}| = \sqrt{6} \) - \( |\vec{B}| = \sqrt{35} \) - \( |\vec{C}| = \sqrt{41} \) Since all three magnitudes are different, this rules out the possibility of an equilateral triangle or an isosceles triangle. ### Step 4: Check for a right-angled triangle To check if the triangle is a right-angled triangle, we will use the Pythagorean theorem. For a triangle with sides \( a \), \( b \), and \( c \) (where \( c \) is the longest side), the condition is: \[ c^2 = a^2 + b^2 \] Assign the sides: - Let \( a = |\vec{A}| = \sqrt{6} \) - Let \( b = |\vec{B}| = \sqrt{35} \) - Let \( c = |\vec{C}| = \sqrt{41} \) Now, we check: \[ c^2 = a^2 + b^2 \] Calculating each side: \[ c^2 = (\sqrt{41})^2 = 41 \] \[ a^2 + b^2 = (\sqrt{6})^2 + (\sqrt{35})^2 = 6 + 35 = 41 \] Since \( c^2 = a^2 + b^2 \), we conclude that the triangle formed by the vectors is a right-angled triangle. ### Conclusion The triangle formed by the vectors \( \vec{A} \), \( \vec{B} \), and \( \vec{C} \) is a right-angled triangle. ---
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Enable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Determine lambda such that a vector vec(r) is at right angles to each of the vectors vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k) .

The position vectors of points A, B, C and D are : vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i) + 5hat(j) + 6hat(k) vec(C ) = 7hat(i) + 9hat(j) + 3hat(k) and vec(D) = 4hat(i) + 6hat(j) Then the displacement vectors vec(AB) and vec(CD) are :

Prove that lines vec( r)= (hat(i)+ hat(j) + hat(k))+ t(hat(i) - hat(j) + hat(k)) and vec(r ) = (3hat(i) - hat(k)) + s(4hat(j) - 16hat(k)) intersect. Also find the position vector of their point of intersection

Consider three vectors vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k) If these three vectors are coplanar, then value of n will be

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Impeccable
  1. Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3h...

    Text Solution

    |

  2. Square of the resultant of two forces of equal magnitude is equal to t...

    Text Solution

    |

  3. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |

  4. The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(...

    Text Solution

    |

  5. Which of the following is incorrect ?

    Text Solution

    |

  6. The minimum number of vectors to give zero resultant is …………………………………....

    Text Solution

    |

  7. Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-ve...

    Text Solution

    |

  8. OF the vectors given below, the parallel vectors are : vec(A) = 6hat...

    Text Solution

    |

  9. If |vec(A) xx vec(B)| = sqrt(3) vec(A).vec(B) then the value of |vec(A...

    Text Solution

    |

  10. For any two vectors vec(A) and vec(B), if vec(A).vec(B) = |vec(A) xx v...

    Text Solution

    |

  11. A particle moves from position 3hat(i) + 2hat(j) - 6hat(k) to 14hat(i)...

    Text Solution

    |

  12. The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat...

    Text Solution

    |

  13. If overset(rarr)A=2 hat i + 3 hat j- hat k and overset(rarr)B=-hat i...

    Text Solution

    |

  14. Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4h...

    Text Solution

    |

  15. Which of the following is a vector quantity ?

    Text Solution

    |

  16. A unit radial vector hatr makes angles of alpha = 30^(@) relative to ...

    Text Solution

    |

  17. What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+...

    Text Solution

    |

  18. Three forces A = (hat(i) + hat(j) + hat(k)), B = (2hat(i) - hat(j) + 3...

    Text Solution

    |

  19. vec(A) is a vector with magnitude A, then the unit vector hat(A) in th...

    Text Solution

    |

  20. Two forces of 12N and 8N act upon a body. The resultant force on the b...

    Text Solution

    |

  21. Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - h...

    Text Solution

    |