Home
Class 12
PHYSICS
int (3 t^(2) + 5) dt :...

`int (3 t^(2) + 5) dt` :

A

`t^(3) + 5t`

B

6t

C

6t + c

D

`t^(3) + 5t + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (3t^2 + 5) \, dt \), we will follow these steps: ### Step 1: Set up the integral Let \( I = \int (3t^2 + 5) \, dt \). ### Step 2: Split the integral We can separate the integral into two parts: \[ I = \int 3t^2 \, dt + \int 5 \, dt \] ### Step 3: Factor out constants Since 3 and 5 are constants, we can factor them out of the integrals: \[ I = 3 \int t^2 \, dt + 5 \int dt \] ### Step 4: Integrate each part Now, we will integrate each part separately. 1. For \( \int t^2 \, dt \): Using the power rule of integration, \( \int t^n \, dt = \frac{t^{n+1}}{n+1} + C \): \[ \int t^2 \, dt = \frac{t^{2+1}}{2+1} = \frac{t^3}{3} \] 2. For \( \int dt \): \[ \int dt = t \] ### Step 5: Substitute back into the equation Now, substituting these results back into our expression for \( I \): \[ I = 3 \left( \frac{t^3}{3} \right) + 5t \] ### Step 6: Simplify the expression The \( 3 \) in the numerator and denominator cancels out: \[ I = t^3 + 5t \] ### Step 7: Add the constant of integration Finally, we add the constant of integration \( C \): \[ I = t^3 + 5t + C \] Thus, the final answer is: \[ \int (3t^2 + 5) \, dt = t^3 + 5t + C \] ---
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f'''(1)-f''(1) is:

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f''(1)-f'(1) is:

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

I=int sqrt(1-t^(2))dt

Integrate the following function (a) int_(o)^(2) 2t dt (b) int _(pi//6)^(pi//3) sin x dx (c) int _(4)^(10)(dx)/(x) (d) int _(o)^(pi) cos x dx (e) int _(1) ^(2)(2t -4) dt

Let f ( x) = int _ 0 ^ x g (t) dt , where g is a non - zero even function . If f(x + 5 ) = g (x) , then int _ 0 ^ x f (t ) dt equals :

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).

If int_(sinx)^(1)t^(2) (f(t)) dt = (1-sinx) , then f ((1)/(sqrt(3))) is

If f(x) = 2x^(3)-15x^(2)+24x and g(x) = int_(0)^(x)f(t) dt + int_(0)^(5-x) f(t) dt (0 lt x lt 5) . Find the number of integers for which g(x) is increasing.

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Enable
  1. The relationship y = (3)/(x) is best represent at :

    Text Solution

    |

  2. If x = (t^(3))/(3) - (5)/(2)t^(2) + 6t + 1, then the value (d^(2)x)/(d...

    Text Solution

    |

  3. int (3 t^(2) + 5) dt :

    Text Solution

    |

  4. If two vectors vec(a) and vec (b) are such that |vec(a) . vec(b) | = ...

    Text Solution

    |

  5. At what angle must the two forces (x+y) and (x-y) act so that the resu...

    Text Solution

    |

  6. The angle between the vector vec(A) and vec(B) is theta. Find the valu...

    Text Solution

    |

  7. If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(...

    Text Solution

    |

  8. Two vectors vec(A)and vec(B) are at right angles to each other then

    Text Solution

    |

  9. The position vectors of points A, B, C and D are : vec(A) = 3hat(i) ...

    Text Solution

    |

  10. For any two vectors vec(A) and vec(B), if vec(A).vec(B) = |vec(A) xx v...

    Text Solution

    |

  11. If vec(A) and vec(B) are perpendicular Vectors and vector vec(A)= 5hat...

    Text Solution

    |

  12. Can the resultant of two vector be zero

    Text Solution

    |

  13. IF vec(A) = 5hat(i) + 12hat(j) and vec(B) = 3hat(i) + 4hat(j), find co...

    Text Solution

    |

  14. The vector from origion to the point A and B are vec(A)=3hat(i)-6hat(j...

    Text Solution

    |

  15. The resultant of vec(A) and vec(B) makes an angle alpha with vec(A) ...

    Text Solution

    |

  16. If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k), th...

    Text Solution

    |

  17. The angle between two vectors given by 6hat(i)+6hat(j)-3hat(k) and 7ha...

    Text Solution

    |

  18. The vector projection of a vector 3hat(i)+4hat(k) on y-axis is

    Text Solution

    |

  19. Position of a particle in a rectangular -co-ordinate (3,2,5). Then its...

    Text Solution

    |

  20. If vec(A) = 3hat(i) + 4hat(j) and vec(B) = 7hat(i) + 24hat(j), the vec...

    Text Solution

    |