Home
Class 12
PHYSICS
Let vec(A)=2hat(i)+hat(j),B=3hat(j)-hat(...

Let `vec(A)=2hat(i)+hat(j),B=3hat(j)-hat(k)` and `vec(C )=6hat(i)-2hat(k)`. Find the value of `vec(A)-2vec(B)+3vec(C )`.

A

`20 hat(i)+ 5hat(j) + 4hat(k)`

B

`20 hat(i)- 5hat(j) - 4hat(k)`

C

`4 hat(i)+ 5hat(j) + 20hat(k)`

D

`5 hat(i)+ 4hat(j) + 10hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \vec{A} - 2\vec{B} + 3\vec{C} \) given the vectors: \[ \vec{A} = 2\hat{i} + \hat{j} \] \[ \vec{B} = 3\hat{j} - \hat{k} \] \[ \vec{C} = 6\hat{i} - 2\hat{k} \] ### Step 1: Write down the expression We start with the expression: \[ \vec{A} - 2\vec{B} + 3\vec{C} \] ### Step 2: Substitute the vectors Substituting the values of \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\): \[ = (2\hat{i} + \hat{j}) - 2(3\hat{j} - \hat{k}) + 3(6\hat{i} - 2\hat{k}) \] ### Step 3: Distribute the coefficients Now, we distribute the coefficients in the expression: \[ = 2\hat{i} + \hat{j} - (6\hat{j} - 2\hat{k}) + (18\hat{i} - 6\hat{k}) \] ### Step 4: Combine like terms Now we will combine the like terms for \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\): 1. **For \(\hat{i}\)**: \[ 2\hat{i} + 18\hat{i} = 20\hat{i} \] 2. **For \(\hat{j}\)**: \[ \hat{j} - 6\hat{j} = -5\hat{j} \] 3. **For \(\hat{k}\)**: \[ -2\hat{k} - 6\hat{k} = -8\hat{k} \] ### Step 5: Write the final result Putting it all together, we have: \[ \vec{A} - 2\vec{B} + 3\vec{C} = 20\hat{i} - 5\hat{j} - 8\hat{k} \] ### Final Answer Thus, the final result is: \[ \vec{A} - 2\vec{B} + 3\vec{C} = 20\hat{i} - 5\hat{j} - 8\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Enable
  1. What is the component of the vector vec(a) along the x-axis in the sit...

    Text Solution

    |

  2. What is the angle between the vector vec(A) and vec(B) as shown in fig...

    Text Solution

    |

  3. Let vec(A)=2hat(i)+hat(j),B=3hat(j)-hat(k) and vec(C )=6hat(i)-2hat(k)...

    Text Solution

    |

  4. An object of m kg with speed of v m s^(-1) strikes a wall at an angle ...

    Text Solution

    |

  5. A particle P is atced by three coplanar forces as shown in the figure....

    Text Solution

    |

  6. If the resultant of the two forces has a magnitude smalle than the mag...

    Text Solution

    |

  7. Forces F(1) and F(2) act on a point mass in two mutually perpendicular...

    Text Solution

    |

  8. The angle between two vectors vec(A) and vec(B) is theta. Then the mag...

    Text Solution

    |

  9. A particle moves from position 3hat(i)+2hat(j)-6hat(k) to 14hat(i)+13h...

    Text Solution

    |

  10. The maximum and minimum magnitudes of the resultant of two vectors are...

    Text Solution

    |

  11. If vec(A) xx vec(B) = vec(B) xx vec(A), then the angle between A to B ...

    Text Solution

    |

  12. Vector vec(a) has components a(x)=3, a(y)=4. Find the components of a ...

    Text Solution

    |

  13. If vec(P) xx vec(Q) =vec(R ), then which of the following statements i...

    Text Solution

    |

  14. If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3ha...

    Text Solution

    |

  15. The magnitudes of vectors vec(A),vec(B) and vec(C) are 3,4 and 5 unit ...

    Text Solution

    |

  16. A force vec(F) = (5hat(i) + 3hat(j)) N is applied over a particle whic...

    Text Solution

    |

  17. Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat...

    Text Solution

    |

  18. The magnitude of the vector product of two vectors is sqrt(3) times th...

    Text Solution

    |

  19. a1 hati+a2hatj is a unit vector perpendicular to 4hati-3hatj if

    Text Solution

    |

  20. A unit vector in the xy-plane that makes an angle of pi/4 with the vec...

    Text Solution

    |