Home
Class 12
PHYSICS
If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) ...

If `vec(A) = 4hat(i) - 2hat(j) + 6hat(k)` and `B = hat(i) - 2hat(j) - 3hat(k)` the angle which the `vec(A) vec(B)` makes with x-axis is :

A

`cos^(-1)((1)/(10))`

B

`cos^(-1)((2)/(sqrt(10)))`

C

`cos^(-1)((1)/(sqrt(10)))`

D

`cos^(-1)((1)/(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle that the vector \(\vec{A} - \vec{B}\) makes with the x-axis, we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = 4\hat{i} - 2\hat{j} + 6\hat{k} \] \[ \vec{B} = \hat{i} - 2\hat{j} - 3\hat{k} \] ### Step 2: Calculate the vector \(\vec{A} - \vec{B}\) To find \(\vec{A} - \vec{B}\), we subtract the components of \(\vec{B}\) from \(\vec{A}\): \[ \vec{A} - \vec{B} = (4\hat{i} - 2\hat{j} + 6\hat{k}) - (\hat{i} - 2\hat{j} - 3\hat{k}) \] Breaking it down: - For the \(\hat{i}\) component: \(4 - 1 = 3\) - For the \(\hat{j}\) component: \(-2 - (-2) = 0\) - For the \(\hat{k}\) component: \(6 - (-3) = 9\) Thus, we have: \[ \vec{A} - \vec{B} = 3\hat{i} + 0\hat{j} + 9\hat{k} \] ### Step 3: Identify the components of the resulting vector The resulting vector can be expressed as: \[ \vec{C} = 3\hat{i} + 0\hat{j} + 9\hat{k} \] Where: - \(C_x = 3\) - \(C_y = 0\) - \(C_z = 9\) ### Step 4: Find the angle with the x-axis The angle \(\theta\) that the vector makes with the x-axis can be found using the formula: \[ \tan(\theta) = \frac{C_z}{C_x} \] Substituting the values: \[ \tan(\theta) = \frac{9}{3} = 3 \] ### Step 5: Calculate \(\theta\) To find \(\theta\): \[ \theta = \tan^{-1}(3) \] ### Step 6: Find the cosine of the angle To express the angle in terms of cosine, we can use the relationship: \[ \cos(\theta) = \frac{C_x}{\sqrt{C_x^2 + C_z^2}} \] Calculating: \[ \cos(\theta) = \frac{3}{\sqrt{3^2 + 9^2}} = \frac{3}{\sqrt{9 + 81}} = \frac{3}{\sqrt{90}} = \frac{3}{3\sqrt{10}} = \frac{1}{\sqrt{10}} \] ### Step 7: Final angle with respect to x-axis Thus, the angle \(\theta\) with respect to the x-axis is: \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{10}}\right) \] ### Summary The angle which the vector \(\vec{A} - \vec{B}\) makes with the x-axis is: \[ \theta = \cos^{-1}\left(\frac{1}{\sqrt{10}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j) + 6hat(k) .Calculate the angle made by (vec(A) +vec(B)) with the x - axis ?

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Enable
  1. Let vec(A)=2hat(i)+hat(j),B=3hat(j)-hat(k) and vec(C )=6hat(i)-2hat(k)...

    Text Solution

    |

  2. An object of m kg with speed of v m s^(-1) strikes a wall at an angle ...

    Text Solution

    |

  3. A particle P is atced by three coplanar forces as shown in the figure....

    Text Solution

    |

  4. If the resultant of the two forces has a magnitude smalle than the mag...

    Text Solution

    |

  5. Forces F(1) and F(2) act on a point mass in two mutually perpendicular...

    Text Solution

    |

  6. The angle between two vectors vec(A) and vec(B) is theta. Then the mag...

    Text Solution

    |

  7. A particle moves from position 3hat(i)+2hat(j)-6hat(k) to 14hat(i)+13h...

    Text Solution

    |

  8. The maximum and minimum magnitudes of the resultant of two vectors are...

    Text Solution

    |

  9. If vec(A) xx vec(B) = vec(B) xx vec(A), then the angle between A to B ...

    Text Solution

    |

  10. Vector vec(a) has components a(x)=3, a(y)=4. Find the components of a ...

    Text Solution

    |

  11. If vec(P) xx vec(Q) =vec(R ), then which of the following statements i...

    Text Solution

    |

  12. If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3ha...

    Text Solution

    |

  13. The magnitudes of vectors vec(A),vec(B) and vec(C) are 3,4 and 5 unit ...

    Text Solution

    |

  14. A force vec(F) = (5hat(i) + 3hat(j)) N is applied over a particle whic...

    Text Solution

    |

  15. Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat...

    Text Solution

    |

  16. The magnitude of the vector product of two vectors is sqrt(3) times th...

    Text Solution

    |

  17. a1 hati+a2hatj is a unit vector perpendicular to 4hati-3hatj if

    Text Solution

    |

  18. A unit vector in the xy-plane that makes an angle of pi/4 with the vec...

    Text Solution

    |

  19. Given that vec(A)+vec(B)+vec(C )=0.Out of three vectors,the two equal ...

    Text Solution

    |

  20. The ratio of maximum and minimum magnitudes of the resultant of two ve...

    Text Solution

    |