Home
Class 12
PHYSICS
Projection of the vector 2hat(i) + 3hat(...

Projection of the vector `2hat(i) + 3hat(j) + 2hat(k)` on the vector `hat(i) - 2hat(j) + 3hat(k)` is :

A

`(2)/(sqrt(14))`

B

`(1)/(sqrt(14))`

C

`(3)/(sqrt(17))`

D

`(3)/(sqrt(14))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \( \mathbf{A} = 2\hat{i} + 3\hat{j} + 2\hat{k} \) on the vector \( \mathbf{B} = \hat{i} - 2\hat{j} + 3\hat{k} \), we can follow these steps: ### Step 1: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) The dot product of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z \] For our vectors: - \( A_x = 2, A_y = 3, A_z = 2 \) - \( B_x = 1, B_y = -2, B_z = 3 \) Now, substituting the values: \[ \mathbf{A} \cdot \mathbf{B} = (2)(1) + (3)(-2) + (2)(3) \] Calculating this gives: \[ = 2 - 6 + 6 = 2 \] ### Step 2: Calculate the magnitude of vector \( \mathbf{B} \) The magnitude of vector \( \mathbf{B} \) is calculated using the formula: \[ |\mathbf{B}| = \sqrt{B_x^2 + B_y^2 + B_z^2} \] Substituting the values: \[ |\mathbf{B}| = \sqrt{(1)^2 + (-2)^2 + (3)^2} \] Calculating this gives: \[ = \sqrt{1 + 4 + 9} = \sqrt{14} \] ### Step 3: Calculate the projection of \( \mathbf{A} \) on \( \mathbf{B} \) The projection of vector \( \mathbf{A} \) on vector \( \mathbf{B} \) is given by the formula: \[ \text{Projection of } \mathbf{A} \text{ on } \mathbf{B} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|} \] Substituting the values we calculated: \[ \text{Projection of } \mathbf{A} \text{ on } \mathbf{B} = \frac{2}{\sqrt{14}} \] ### Final Answer Thus, the projection of the vector \( 2\hat{i} + 3\hat{j} + 2\hat{k} \) on the vector \( \hat{i} - 2\hat{j} + 3\hat{k} \) is: \[ \frac{2}{\sqrt{14}} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)

The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along the vector vec(b) = hat(i) + 2 hat(j)+ 2hat(k) is

Find the projection of the vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat k

Find the image of the point having position vector hat(i) + 3hat(j) + 4hat(k) in the plane vec(r ).(2hat(i) - hat(j) + hat(k))+ 3=0

The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat(j) is

Write the value of lamda so that the vectors vec(a)= 2hat(i) + lamda hat(j) + hat(k) and vec(b)= hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other?

Write the projection of the vector hat i+3 hat j+7 hat k on the vector 2 hat i-3 hat j+6 hat kdot

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the projection of the vector vec a=2 hat i+3 hat j+2 hat k on the vector vec b=2 hat i+2 hat j+ hat k .

Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Enable
  1. Let vec(A)=2hat(i)+hat(j),B=3hat(j)-hat(k) and vec(C )=6hat(i)-2hat(k)...

    Text Solution

    |

  2. An object of m kg with speed of v m s^(-1) strikes a wall at an angle ...

    Text Solution

    |

  3. A particle P is atced by three coplanar forces as shown in the figure....

    Text Solution

    |

  4. If the resultant of the two forces has a magnitude smalle than the mag...

    Text Solution

    |

  5. Forces F(1) and F(2) act on a point mass in two mutually perpendicular...

    Text Solution

    |

  6. The angle between two vectors vec(A) and vec(B) is theta. Then the mag...

    Text Solution

    |

  7. A particle moves from position 3hat(i)+2hat(j)-6hat(k) to 14hat(i)+13h...

    Text Solution

    |

  8. The maximum and minimum magnitudes of the resultant of two vectors are...

    Text Solution

    |

  9. If vec(A) xx vec(B) = vec(B) xx vec(A), then the angle between A to B ...

    Text Solution

    |

  10. Vector vec(a) has components a(x)=3, a(y)=4. Find the components of a ...

    Text Solution

    |

  11. If vec(P) xx vec(Q) =vec(R ), then which of the following statements i...

    Text Solution

    |

  12. If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3ha...

    Text Solution

    |

  13. The magnitudes of vectors vec(A),vec(B) and vec(C) are 3,4 and 5 unit ...

    Text Solution

    |

  14. A force vec(F) = (5hat(i) + 3hat(j)) N is applied over a particle whic...

    Text Solution

    |

  15. Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat...

    Text Solution

    |

  16. The magnitude of the vector product of two vectors is sqrt(3) times th...

    Text Solution

    |

  17. a1 hati+a2hatj is a unit vector perpendicular to 4hati-3hatj if

    Text Solution

    |

  18. A unit vector in the xy-plane that makes an angle of pi/4 with the vec...

    Text Solution

    |

  19. Given that vec(A)+vec(B)+vec(C )=0.Out of three vectors,the two equal ...

    Text Solution

    |

  20. The ratio of maximum and minimum magnitudes of the resultant of two ve...

    Text Solution

    |