Home
Class 12
PHYSICS
If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)...

If `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)`, then the value of `|vec(A)+vec(B)|` is

A

`(A^(2) + B^(2) + AB)^(1//2)`

B

`(A^(2) + B^(2) + (AB)/(sqrt(3)))^(1//2)`

C

`A+B`

D

`(A^(2) + B^(2) + sqrt(3)AB)^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ |\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B} \] ### Step 1: Use the definitions of cross product and dot product We know that the magnitude of the cross product of two vectors can be expressed as: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] And the dot product is given by: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \] ### Step 2: Substitute these definitions into the equation Substituting these definitions into the given equation, we have: \[ |\vec{A}| |\vec{B}| \sin \theta = \sqrt{3} (|\vec{A}| |\vec{B}| \cos \theta) \] ### Step 3: Cancel out the common terms Assuming \( |\vec{A}| \) and \( |\vec{B}| \) are not zero, we can divide both sides by \( |\vec{A}| |\vec{B}| \): \[ \sin \theta = \sqrt{3} \cos \theta \] ### Step 4: Divide both sides by \( \cos \theta \) This gives us: \[ \tan \theta = \sqrt{3} \] ### Step 5: Determine the angle \( \theta \) From trigonometry, we know: \[ \tan 60^\circ = \sqrt{3} \] Thus, we conclude: \[ \theta = 60^\circ \] ### Step 6: Calculate the magnitude of \( \vec{A} + \vec{B} \) The magnitude of the resultant vector \( \vec{A} + \vec{B} \) can be calculated using the formula: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} \] ### Step 7: Substitute \( \theta = 60^\circ \) We know that \( \cos 60^\circ = \frac{1}{2} \). Substituting this into our equation gives: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cdot \frac{1}{2}} \] ### Step 8: Simplify the expression This simplifies to: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \] ### Final Result Thus, the value of \( |\vec{A} + \vec{B}| \) is: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

If vec(A)xxvec(B)=vec(B)xxvec(A) , then the angle between vec(A) and vec(B) is-

|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

vec(A) and vec(B) are two Vectors and theta is the angle between them, if |vec(A)xxvec(B)|= sqrt(3)(vec(A).vec(B)) the value of theta is

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

a, b are the magnitudes of vectors vec(a) & vec(b) . If vec(a)xx vec(b)=0 the value of vec(a).vec(b) is

If vec(A)xxvec(B)= vec(C )+vec(D) , then select the correct alternative.

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Impeccable
  1. Square of the resultant of two forces of equal magnitude is equal to t...

    Text Solution

    |

  2. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |

  3. The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(...

    Text Solution

    |

  4. Which of the following is incorrect ?

    Text Solution

    |

  5. The minimum number of vectors to give zero resultant is …………………………………....

    Text Solution

    |

  6. Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-ve...

    Text Solution

    |

  7. OF the vectors given below, the parallel vectors are : vec(A) = 6hat...

    Text Solution

    |

  8. If |vec(A) xx vec(B)| = sqrt(3) vec(A).vec(B) then the value of |vec(A...

    Text Solution

    |

  9. For any two vectors vec(A) and vec(B), if vec(A).vec(B) = |vec(A) xx v...

    Text Solution

    |

  10. A particle moves from position 3hat(i) + 2hat(j) - 6hat(k) to 14hat(i)...

    Text Solution

    |

  11. The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat...

    Text Solution

    |

  12. If overset(rarr)A=2 hat i + 3 hat j- hat k and overset(rarr)B=-hat i...

    Text Solution

    |

  13. Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4h...

    Text Solution

    |

  14. Which of the following is a vector quantity ?

    Text Solution

    |

  15. A unit radial vector hatr makes angles of alpha = 30^(@) relative to ...

    Text Solution

    |

  16. What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+...

    Text Solution

    |

  17. Three forces A = (hat(i) + hat(j) + hat(k)), B = (2hat(i) - hat(j) + 3...

    Text Solution

    |

  18. vec(A) is a vector with magnitude A, then the unit vector hat(A) in th...

    Text Solution

    |

  19. Two forces of 12N and 8N act upon a body. The resultant force on the b...

    Text Solution

    |

  20. Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - h...

    Text Solution

    |