Home
Class 12
PHYSICS
The vectors from origin to the points A ...

The vectors from origin to the points A and B are `vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k)` respectively. Find the area of :
(i) the triangle OAB
(ii) the parallelogram formed by `vec(OA) and vec(OB)` as adjacent sides.

A

`(5)/(2)sqrt(17)`

B

`(2)/(5)sqrt(17)`

C

`(3)/(5)sqrt(17)`

D

`(5)/(3)sqrt(17)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the area of the triangle OAB and the area of the parallelogram formed by vectors OA and OB. Let's break it down step by step. ### Step 1: Define the Vectors Given: - \( \vec{A} = 3\hat{i} - 6\hat{j} + 2\hat{k} \) - \( \vec{B} = 2\hat{i} + \hat{j} - 2\hat{k} \) ### Step 2: Find Vectors OA and OB The vectors from the origin O to points A and B are: - \( \vec{OA} = \vec{A} - \vec{O} = \vec{A} = 3\hat{i} - 6\hat{j} + 2\hat{k} \) - \( \vec{OB} = \vec{B} - \vec{O} = \vec{B} = 2\hat{i} + \hat{j} - 2\hat{k} \) ### Step 3: Calculate the Cross Product \( \vec{OA} \times \vec{OB} \) To find the area of the triangle, we need to calculate the cross product \( \vec{OA} \times \vec{OB} \). \[ \vec{OA} \times \vec{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -6 & 2 \\ 2 & 1 & -2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -6 & 2 \\ 1 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 2 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -6 \\ 2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ (-6)(-2) - (2)(1) = 12 - 2 = 10 \] 2. For \( -\hat{j} \): \[ (3)(-2) - (2)(2) = -6 - 4 = -10 \quad \Rightarrow \quad -(-10) = 10 \] 3. For \( \hat{k} \): \[ (3)(1) - (-6)(2) = 3 + 12 = 15 \] Putting it all together: \[ \vec{OA} \times \vec{OB} = 10\hat{i} + 10\hat{j} + 15\hat{k} \] ### Step 4: Find the Magnitude of the Cross Product Now, we calculate the magnitude of \( \vec{OA} \times \vec{OB} \): \[ |\vec{OA} \times \vec{OB}| = \sqrt{(10)^2 + (10)^2 + (15)^2} = \sqrt{100 + 100 + 225} = \sqrt{425} \] ### Step 5: Calculate the Area of Triangle OAB The area of triangle OAB is given by: \[ \text{Area}_{\triangle OAB} = \frac{1}{2} |\vec{OA} \times \vec{OB}| = \frac{1}{2} \sqrt{425} = \frac{5\sqrt{17}}{2} \] ### Step 6: Calculate the Area of Parallelogram The area of the parallelogram formed by vectors OA and OB is given by: \[ \text{Area}_{\text{parallelogram}} = |\vec{OA} \times \vec{OB}| = \sqrt{425} = 5\sqrt{17} \] ### Final Answers - Area of triangle OAB: \( \frac{5\sqrt{17}}{2} \) - Area of the parallelogram: \( 5\sqrt{17} \)
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

The vector from origion to the point A and B are vec(A)=3hat(i)-6hat(j)+2hat(k) and vec(B)=2hat(i)+hat(j)-2hat(k) ,respectively. Find the area of the triangle OAB.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Impeccable
  1. Square of the resultant of two forces of equal magnitude is equal to t...

    Text Solution

    |

  2. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |

  3. The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(...

    Text Solution

    |

  4. Which of the following is incorrect ?

    Text Solution

    |

  5. The minimum number of vectors to give zero resultant is …………………………………....

    Text Solution

    |

  6. Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-ve...

    Text Solution

    |

  7. OF the vectors given below, the parallel vectors are : vec(A) = 6hat...

    Text Solution

    |

  8. If |vec(A) xx vec(B)| = sqrt(3) vec(A).vec(B) then the value of |vec(A...

    Text Solution

    |

  9. For any two vectors vec(A) and vec(B), if vec(A).vec(B) = |vec(A) xx v...

    Text Solution

    |

  10. A particle moves from position 3hat(i) + 2hat(j) - 6hat(k) to 14hat(i)...

    Text Solution

    |

  11. The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat...

    Text Solution

    |

  12. If overset(rarr)A=2 hat i + 3 hat j- hat k and overset(rarr)B=-hat i...

    Text Solution

    |

  13. Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4h...

    Text Solution

    |

  14. Which of the following is a vector quantity ?

    Text Solution

    |

  15. A unit radial vector hatr makes angles of alpha = 30^(@) relative to ...

    Text Solution

    |

  16. What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+...

    Text Solution

    |

  17. Three forces A = (hat(i) + hat(j) + hat(k)), B = (2hat(i) - hat(j) + 3...

    Text Solution

    |

  18. vec(A) is a vector with magnitude A, then the unit vector hat(A) in th...

    Text Solution

    |

  19. Two forces of 12N and 8N act upon a body. The resultant force on the b...

    Text Solution

    |

  20. Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - h...

    Text Solution

    |