Home
Class 12
PHYSICS
If hat(i), hat(j) and hat(k) represent u...

If `hat(i), hat(j)` and `hat(k)` represent unit vectors along the x, y and z axes respectively, then the angle `theta` between the vectors `(hat(i) + hat(j) + hat(k))` and `(hat(i) + hat(j))` is equal to :

A

`sin^(-1)((1)/(sqrt(3)))`

B

`sin^(-1)(sqrt((2)/(3)))`

C

`cos^(-1)((1)/(sqrt(3)))`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle \( \theta \) between the vectors \( \hat{i} + \hat{j} + \hat{k} \) and \( \hat{i} + \hat{j} \), we can follow these steps: ### Step 1: Define the Vectors Let: - Vector \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - Vector \( \mathbf{B} = \hat{i} + \hat{j} \) ### Step 2: Calculate the Dot Product The dot product of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = (\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j}) \] Calculating the dot product: \[ \mathbf{A} \cdot \mathbf{B} = \hat{i} \cdot \hat{i} + \hat{i} \cdot \hat{j} + \hat{j} \cdot \hat{i} + \hat{j} \cdot \hat{j} + \hat{k} \cdot \hat{i} + \hat{k} \cdot \hat{j} \] Since the dot product of different unit vectors is zero, we have: \[ \mathbf{A} \cdot \mathbf{B} = 1 + 0 + 0 + 1 + 0 + 0 = 2 \] ### Step 3: Calculate the Magnitudes of the Vectors The magnitude of vector \( \mathbf{A} \) is: \[ |\mathbf{A}| = \sqrt{(\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k})} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] The magnitude of vector \( \mathbf{B} \) is: \[ |\mathbf{B}| = \sqrt{(\hat{i} + \hat{j}) \cdot (\hat{i} + \hat{j})} = \sqrt{1^2 + 1^2} = \sqrt{2} \] ### Step 4: Use the Cosine Formula The angle \( \theta \) between two vectors can be calculated using the formula: \[ \cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} \] Substituting the values we calculated: \[ \cos \theta = \frac{2}{\sqrt{3} \cdot \sqrt{2}} = \frac{2}{\sqrt{6}} = \frac{\sqrt{6}}{3} \] ### Step 5: Find the Sine of the Angle To convert \( \cos \theta \) to \( \sin \theta \), we can use the identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Calculating \( \sin^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{\sqrt{6}}{3}\right)^2 = 1 - \frac{6}{9} = \frac{3}{9} = \frac{1}{3} \] Thus, \[ \sin \theta = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} \] ### Step 6: Find the Angle \( \theta \) Finally, we can find \( \theta \): \[ \theta = \sin^{-1} \left(\frac{1}{\sqrt{3}}\right) \] ### Conclusion The angle \( \theta \) between the vectors \( \hat{i} + \hat{j} + \hat{k} \) and \( \hat{i} + \hat{j} \) is: \[ \theta = \sin^{-1} \left(\frac{1}{\sqrt{3}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Unit vector along the vector hat(i) + hat(j) + hat(k) is

Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) + hat(j) is

Find angle theta between the vectors veca= hat i+ hat j- hat k and vecb= hat i- hat j+ hat k .

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the angle between two vectors A= 2 hat i + hat j - hat k and B=hat i - hat k .

If x(hat(i) + hat(j) + hat(k)) is a unit vector then x equals ?

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Impeccable
  1. If a(1) and a(2) aare two non- collineaar unit vectors and if |a(1)+a(...

    Text Solution

    |

  2. There are n coplanar vectors each of magnitude m and each vector is in...

    Text Solution

    |

  3. If hat(i), hat(j) and hat(k) represent unit vectors along the x, y and...

    Text Solution

    |

  4. The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point...

    Text Solution

    |

  5. Six vector vec(a) through vec(f) have the magnitudes and direction ind...

    Text Solution

    |

  6. For any two vectors barA and barB if barA.barB=|bar AxxbarB|, the ma...

    Text Solution

    |

  7. If vec(A) + vec(B) = vec(C ) and A + B = C, then the angle between vec...

    Text Solution

    |

  8. Three equal masses of 2kg each are placed at the vertices of an equila...

    Text Solution

    |

  9. The value of lambda for which the two vectors vec(a) = 5hat(i) + lambd...

    Text Solution

    |

  10. At what angl must the two forces (x+y) and (x-y) act so that the resul...

    Text Solution

    |

  11. Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the po...

    Text Solution

    |

  12. A variable force, given by the 2-dimensional vector vecF = (3x^(2)hati...

    Text Solution

    |

  13. A motorboat covers a given distance in 6h moving downstream on a river...

    Text Solution

    |

  14. If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) ...

    Text Solution

    |

  15. The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat...

    Text Solution

    |

  16. Which of the following is correct relation between an arbitrary vector...

    Text Solution

    |

  17. If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) ...

    Text Solution

    |

  18. If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k)...

    Text Solution

    |

  19. A certain vector in the xy plane has an x-component of 12 m and a y-co...

    Text Solution

    |

  20. The X and Y components of a force F acting at 30^(@) to x-axis are res...

    Text Solution

    |