Home
Class 12
PHYSICS
If vec(A) = hat(i) + hat(j) + hat(k) and...

If `vec(A) = hat(i) + hat(j) + hat(k)` and `B = -hat(i) - hat(j) - hat(k)`. Then angle made by `(vec(A) - vec(B))` with `vec(A)` is :

A

`0^(@)`

B

`180^(@)`

C

`90^(@)`

D

`60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle made by the vector \( \vec{A} - \vec{B} \) with the vector \( \vec{A} \). ### Step 1: Define the vectors Given: \[ \vec{A} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{B} = -\hat{i} - \hat{j} - \hat{k} \] ### Step 2: Calculate \( \vec{A} - \vec{B} \) We can calculate \( \vec{A} - \vec{B} \) as follows: \[ \vec{A} - \vec{B} = (\hat{i} + \hat{j} + \hat{k}) - (-\hat{i} - \hat{j} - \hat{k}) \] This simplifies to: \[ \vec{A} - \vec{B} = \hat{i} + \hat{j} + \hat{k} + \hat{i} + \hat{j} + \hat{k} \] \[ = 2\hat{i} + 2\hat{j} + 2\hat{k} \] ### Step 3: Express \( \vec{A} - \vec{B} \) in terms of \( \vec{A} \) Notice that: \[ \vec{A} - \vec{B} = 2(\hat{i} + \hat{j} + \hat{k}) = 2\vec{A} \] ### Step 4: Find the angle between \( \vec{A} - \vec{B} \) and \( \vec{A} \) The angle \( \theta \) between two vectors \( \vec{X} \) and \( \vec{Y} \) can be found using the formula: \[ \cos \theta = \frac{\vec{X} \cdot \vec{Y}}{|\vec{X}| |\vec{Y}|} \] In our case, let \( \vec{X} = \vec{A} - \vec{B} = 2\vec{A} \) and \( \vec{Y} = \vec{A} \). ### Step 5: Calculate the dot product and magnitudes 1. **Dot Product**: \[ \vec{X} \cdot \vec{Y} = (2\vec{A}) \cdot \vec{A} = 2(\vec{A} \cdot \vec{A}) = 2|\vec{A}|^2 \] 2. **Magnitude of \( \vec{A} \)**: \[ |\vec{A}| = \sqrt{(\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k})} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] Therefore, \[ |\vec{A}|^2 = 3 \] 3. **Magnitude of \( \vec{X} \)**: \[ |\vec{X}| = |2\vec{A}| = 2|\vec{A}| = 2\sqrt{3} \] ### Step 6: Substitute into the cosine formula Now substituting into the cosine formula: \[ \cos \theta = \frac{2|\vec{A}|^2}{|\vec{X}| |\vec{Y}|} = \frac{2 \cdot 3}{(2\sqrt{3})(\sqrt{3})} \] \[ = \frac{6}{2 \cdot 3} = 1 \] ### Step 7: Determine the angle Since \( \cos \theta = 1 \), it implies: \[ \theta = 0^\circ \] ### Final Answer The angle made by \( \vec{A} - \vec{B} \) with \( \vec{A} \) is \( 0^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Impeccable
  1. For any two vectors barA and barB if barA.barB=|bar AxxbarB|, the ma...

    Text Solution

    |

  2. If vec(A) + vec(B) = vec(C ) and A + B = C, then the angle between vec...

    Text Solution

    |

  3. Three equal masses of 2kg each are placed at the vertices of an equila...

    Text Solution

    |

  4. The value of lambda for which the two vectors vec(a) = 5hat(i) + lambd...

    Text Solution

    |

  5. At what angl must the two forces (x+y) and (x-y) act so that the resul...

    Text Solution

    |

  6. Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the po...

    Text Solution

    |

  7. A variable force, given by the 2-dimensional vector vecF = (3x^(2)hati...

    Text Solution

    |

  8. A motorboat covers a given distance in 6h moving downstream on a river...

    Text Solution

    |

  9. If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) ...

    Text Solution

    |

  10. The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat...

    Text Solution

    |

  11. Which of the following is correct relation between an arbitrary vector...

    Text Solution

    |

  12. If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) ...

    Text Solution

    |

  13. If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k)...

    Text Solution

    |

  14. A certain vector in the xy plane has an x-component of 12 m and a y-co...

    Text Solution

    |

  15. The X and Y components of a force F acting at 30^(@) to x-axis are res...

    Text Solution

    |

  16. Two vectors are given by vec(A) = hat(i) + 2hat(j) + 2hat(k) and vec(B...

    Text Solution

    |

  17. Which of the following pairs of vectors are parallel ?

    Text Solution

    |

  18. Which of the following is not vector quantity ?

    Text Solution

    |

  19. The scalar quantity among the following is

    Text Solution

    |

  20. The component of a vector r along X-axis will have maximum value if

    Text Solution

    |