Home
Class 12
CHEMISTRY
In reaction: CH(3)COCH(3)(g)hArrCH(3)C...

In reaction:
`CH_(3)COCH_(3)(g)hArrCH_(3)CH_(3)(g)+CO(g),`
if the initial pressure of `CH_(3)COCH_(3)(g)` is `150 mm` and at equilibrium the mole fraction of `CO(g)` is `1/3`, then the value `K_(P)` is

A

100 mm

B

50 mm

C

25 mm

D

150 mm

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the equilibrium constant \( K_p \) for the reaction: \[ \text{CH}_3\text{COCH}_3(g) \rightleftharpoons \text{CH}_3\text{CH}_3(g) + \text{CO}(g) \] ### Step 1: Understand the given information - Initial pressure of \( \text{CH}_3\text{COCH}_3 \) is \( 150 \, \text{mm} \). - At equilibrium, the mole fraction of \( \text{CO} \) is \( \frac{1}{3} \). ### Step 2: Relate mole fraction to moles The mole fraction of \( \text{CO} \) being \( \frac{1}{3} \) means that out of a total of 3 moles, 1 mole is \( \text{CO} \). Thus, we can infer that: - Moles of \( \text{CO} = 1 \) - Moles of \( \text{CH}_3\text{CH}_3 = 1 \) - Moles of \( \text{CH}_3\text{COCH}_3 = 1 \) ### Step 3: Calculate total moles at equilibrium Since the mole fraction of \( \text{CO} \) is \( \frac{1}{3} \), the total moles at equilibrium can be expressed as: \[ \text{Total moles} = \text{Moles of } \text{CO} + \text{Moles of } \text{CH}_3\text{CH}_3 + \text{Moles of } \text{CH}_3\text{COCH}_3 = 1 + 1 + 1 = 3 \] ### Step 4: Calculate partial pressures Using the initial pressure of \( \text{CH}_3\text{COCH}_3 \): - The partial pressure of \( \text{CO} \) can be calculated as: \[ P_{\text{CO}} = \text{Mole fraction of } \text{CO} \times \text{Total pressure} = \frac{1}{3} \times 150 \, \text{mm} = 50 \, \text{mm} \] - Since the reaction produces equal moles of \( \text{CH}_3\text{CH}_3 \) and \( \text{CO} \), the partial pressure of \( \text{CH}_3\text{CH}_3 \) is also: \[ P_{\text{CH}_3\text{CH}_3} = 50 \, \text{mm} \] - The remaining pressure for \( \text{CH}_3\text{COCH}_3 \) at equilibrium will also be: \[ P_{\text{CH}_3\text{COCH}_3} = 150 \, \text{mm} - 50 \, \text{mm} - 50 \, \text{mm} = 50 \, \text{mm} \] ### Step 5: Calculate \( K_p \) The expression for \( K_p \) is given by: \[ K_p = \frac{P_{\text{CH}_3\text{CH}_3} \times P_{\text{CO}}}{P_{\text{CH}_3\text{COCH}_3}} \] Substituting the values: \[ K_p = \frac{(50 \, \text{mm}) \times (50 \, \text{mm})}{50 \, \text{mm}} = 50 \, \text{mm} \] ### Final Answer Thus, the value of \( K_p \) is \( 50 \, \text{mm} \). ---
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    VMC MODULES ENGLISH|Exercise IMPECCABLE|50 Videos
  • CHEMICAL EQUILIBRIUM

    VMC MODULES ENGLISH|Exercise Illustration|24 Videos
  • CHEMICAL EQUILIBRIUM

    VMC MODULES ENGLISH|Exercise ENABLE|49 Videos
  • CHEMICAL BONDING-I & II

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|98 Videos
  • CHEMICAL KINETICS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|52 Videos

Similar Questions

Explore conceptually related problems

CH_(3)COCH_(3(g))hArrC_(2)H_(6) (g)+CO_((g)) , The initial pressure of CH_(3)COCH_(3) is 50 mm . At equilibrium the mole fraction of C_(2)H_(6) is 1/5 then K_(p) will be :-

CH_3COCH_3(g)⇌CH_3CH_3(g)+CO(g) Initial pressure of CH_3COCH_3 is 150mm of Hg. When equilibrium is set up fraction of CO(g) is 1/3 . Hence Kp is?

Name the functional group present in CH_(3)COCH_(3)

Write the IUPAC name of CH_(3)COCH_(2)COCH_(3) .

IUPAC name of CH_(3)CH_(2)CH_(2)CH(CH_(3))COCH_(3) is

Write the IUPAC name of : CH_(3)CH_(2)COCH_(3) .

VMC MODULES ENGLISH-CHEMICAL EQUILIBRIUM-EFFICIENT
  1. The following two reactions: i. PCl(5)(g) hArr PCl(3)(g)+Cl(2)(g) ...

    Text Solution

    |

  2. The equilibrium constants for the reaction Br(2)hArr 2Br at 500 K an...

    Text Solution

    |

  3. In reaction: CH(3)COCH(3)(g)hArrCH(3)CH(3)(g)+CO(g), if the initia...

    Text Solution

    |

  4. 2 mole of H(2) and "1 mole of "I(2) are heated in a closed 1 litre ves...

    Text Solution

    |

  5. For the reaction, A(g)+2B(g)hArr2C(g) one mole of A and 1.5 mol of B a...

    Text Solution

    |

  6. If 0.2 mol of H(2)(g) and 2.0 mol of S(s) are mixed in a 1.0 L vessel ...

    Text Solution

    |

  7. The equilibrium K(c)for the reaction SO(2)(g)NO(2)(g)hArrSO(3)(g)+NO(g...

    Text Solution

    |

  8. If in the reaction, N(2)O(4)(g)hArr2NO(2)(g), alpha is the degree of d...

    Text Solution

    |

  9. For the reversible system : X((g))hArrY((g))+Z((g)), a quantity of X w...

    Text Solution

    |

  10. 2 "mole" of PCl(5) were heated in a closed vessel of 2 litre capacity....

    Text Solution

    |

  11. 2 "mole" N(2) and 3 "mole" H(2) gas are allowed to react in a 20 L fla...

    Text Solution

    |

  12. In an aqueous solution of volume 500 ml when the reaction 2Ag^(+)(aq)+...

    Text Solution

    |

  13. The equilibrium constant for the reaction, 2SO(2)(g)+O(2)(g)hArr 2SO...

    Text Solution

    |

  14. Equilibrium constant for the reaction, CaCO(3)(s)hArr CaO(s)+CO(2)(g...

    Text Solution

    |

  15. For the reaction NH(2)COONH(4)(g)hArr 2NH(3)(g)+CO(2)(g) the equilib...

    Text Solution

    |

  16. Given : AhArrB+C, DeltaH=-"10 kcals", the energy of activation of back...

    Text Solution

    |

  17. In preparation of CaO from CaCO(3) using the equilibrium, CaCO(3)(g)hA...

    Text Solution

    |

  18. To the system, LaCl(3)(s)+H(2)O(g) hArr LaClO(s)+2HCL(g)-"Heat" alre...

    Text Solution

    |

  19. For an ideal gas reaction 2A+BhArrC+D the value of K(p) will be:

    Text Solution

    |

  20. 40% of a mixture of 0.2 mol of N(2) and 0.6 mol of H(2) react to give ...

    Text Solution

    |