Home
Class 12
PHYSICS
d/(dx) (Ax + B)^(n)...

`d/(dx) (Ax + B)^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (Ax + B)^n \) with respect to \( x \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Function**: We start with the function: \[ y = (Ax + B)^n \] 2. **Substitute for Simplicity**: Let \( t = Ax + B \). This simplifies our function to: \[ y = t^n \] 3. **Differentiate Using Chain Rule**: According to the chain rule, the derivative of \( y \) with respect to \( x \) can be expressed as: \[ \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} \] 4. **Differentiate \( y \) with respect to \( t \)**: Now, we differentiate \( y = t^n \) with respect to \( t \): \[ \frac{dy}{dt} = n \cdot t^{n-1} \] 5. **Differentiate \( t \) with respect to \( x \)**: Next, we differentiate \( t = Ax + B \) with respect to \( x \): \[ \frac{dt}{dx} = A \] 6. **Combine the Results**: Now, substituting back into the chain rule expression: \[ \frac{dy}{dx} = n \cdot t^{n-1} \cdot A \] 7. **Substitute \( t \) Back**: Finally, we substitute \( t \) back in terms of \( x \): \[ \frac{dy}{dx} = n \cdot A \cdot (Ax + B)^{n-1} \] ### Final Answer: Thus, the derivative of \( (Ax + B)^n \) with respect to \( x \) is: \[ \frac{d}{dx} (Ax + B)^n = nA (Ax + B)^{n-1} \]

To differentiate the function \( y = (Ax + B)^n \) with respect to \( x \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Function**: We start with the function: \[ y = (Ax + B)^n ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that : d/(dx)(x^n)=n x^(n-1) for all n in NN .

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.

If (d)/(dx)[ x^(n+1)+c]=(n+1)x^(n) , then find int x^(n)dx .

Let the function ln f(x) is defined where f(x) exists for 2 geq x and k is fixed positive real numbers prove that if -k f(x) geq d/(dx) (x.f(x)) then f(x) geq Ax^(k-1) where A is independent of x.

If the solution of the differential equation (dy)/(dx ) =( ax+ 4) /( 2y + f) represents a circle, then the value of a is:

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

If the differential equation of the family of curve given by y=Ax+Be^(2x), where A and B are arbitary constants is of the form (1-2x)(d)/(dx)((dy)/(dx)+ly)+k((dy)/(dx)+ly)=0, then the ordered pair (k,l) is

Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," then "(f''(x))/(f(x))=1640x^(2) "II. "(d)/(dx){tan^(-1)((2x)/(1-x^(2)))}=(1)/(1+x^(2)) Which of the following is correct ?

If (1)/((ax+b)(cx+d))=(A)/(ax+b) + (B)/(cx+d) then show that (1)/((ax+b)^(2)(cx+d))=(A)/((ax+b)^(2))+(AB)/(ax+b)+(B^(2))/(cx+d) .