Home
Class 12
PHYSICS
Find the minimum and maximum values of t...

Find the minimum and maximum values of the funciton `y=x^3-3x^2+6`. Also find the values of x at which these occur.

Text Solution

Verified by Experts

The correct Answer is:
2

`(dy)/(dx)=3x^(2)-6x`
For maximum or minimum values of the function, `(dy)/(dx)=0`
`therefore 3x^(2)-6x=0implies3x(x-2)=0`
or, `x=0andx=2`
Now, `(d^(2)y)/(dx^(2))=6x-6`
At `x=0, (d^(2)y)/(dx^(2))=-6lt0` (Maxima)
`therefore y_(max)=(0)^(3)-3(0)^(2)+6=6`
At `x=2,(d^(2)y)/(dx^(2))=12-6=6gt0` (Minima)
`therefore y_(min)=2^(3)-3(2)^(2)+6=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x)=tanx-2x .

Find the maximum and minimum values of the function y=x^(3) , "in" x in [-2,3] ?

Find minimum and maximum value of 3cosx+5sin(x-pi/6)

Find the minimum and maximum values of y in 4x^2 + 12xy + 10y^2-4y + 3 = 0

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

Find the maxima and minimum value of the function y = 40/(3x^(4)+ 8x^(3)- 18x^(2) +60 .

Find the maximum and minimum values of f(x)=2x^3-24 x+107 in the interval [1,\ 3] .

Find the maximum and minimum values of the following functions. f(x)=2x^(3)-15x^(2)+36x+10

Find the maximum and minimum values , if any , of the function f given by f(x)=3-|x|

Find the maximum or minimum values of the following functions: (i) x^(3)-2x^(2)+x+3