Home
Class 12
PHYSICS
Integrate the following : intsin2xdx...

Integrate the following :
`intsin2xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin(2x) \, dx \), we can follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int \sin(2x) \, dx \] ### Step 2: Use the integration formula for sine We know that the integral of \( \sin(kx) \) is given by: \[ \int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C \] where \( k \) is a constant and \( C \) is the constant of integration. ### Step 3: Apply the formula In our case, \( k = 2 \). Therefore, we apply the formula: \[ I = -\frac{1}{2} \cos(2x) + C \] ### Step 4: Write the final answer Thus, the integral of \( \sin(2x) \) is: \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C \] ### Summary The final result of the integration is: \[ -\frac{1}{2} \cos(2x) + C \]

To solve the integral \( \int \sin(2x) \, dx \), we can follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int \sin(2x) \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

intsin^2bxdx

intsin^8xdx

Integrate the following : intcos{(x)/(2)}dx

intsin^2 2xdx

intsin^3 2xdx

Integrate the following : (i) int(t-(1)/(t))^(2)" dt " (ii) intsin(10t-50)" dt " (iii) inte^((100t+6))" dt "

Integrate the following (1) intx^(-3/2)dx (2) intsin60^(@)dx (3) int(1)/(10x)dx (4) int(2x^(3)-x^(2)+1)dx

Integrate the following cos^(2) 3x

Integrate the following w.r.t x 2//x^(3//2)

Integrate the following w.r.t x cos^(2)(x//2)