Home
Class 12
PHYSICS
Integrate the following : intcos{(x)/(...

Integrate the following :
`intcos{(x)/(2)}dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos\left(\frac{x}{2}\right) \, dx \), we will follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int \cos\left(\frac{x}{2}\right) \, dx \] ### Step 2: Use substitution To solve this integral, we can use a substitution. Let: \[ u = \frac{x}{2} \] Then, the differential \( dx \) can be expressed in terms of \( du \): \[ dx = 2 \, du \] ### Step 3: Change the limits of integration Now, substituting \( u \) into the integral, we have: \[ I = \int \cos(u) \cdot 2 \, du \] This simplifies to: \[ I = 2 \int \cos(u) \, du \] ### Step 4: Integrate We know that the integral of \( \cos(u) \) is \( \sin(u) \): \[ I = 2 \sin(u) + C \] ### Step 5: Substitute back Now, we substitute back \( u = \frac{x}{2} \): \[ I = 2 \sin\left(\frac{x}{2}\right) + C \] ### Final Result Thus, the final result of the integral is: \[ \int \cos\left(\frac{x}{2}\right) \, dx = 2 \sin\left(\frac{x}{2}\right) + C \] ---

To solve the integral \( \int \cos\left(\frac{x}{2}\right) \, dx \), we will follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int \cos\left(\frac{x}{2}\right) \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the following (1) intx^(-3/2)dx (2) intsin60^(@)dx (3) int(1)/(10x)dx (4) int(2x^(3)-x^(2)+1)dx

Integrate the following integrals (i) int(dx)/(sqrt(5x^(2)-2x)) (ii) int(1)/(sqrt(2ax-x^(2)))dx

Integrate the following functions int_(0)^(r ) (2x-x^(3)) dx

Integrate the following functions int_(0)^(pi//2) " cos x dx"

Evaluate the following integrals : intcos^(-1)(cosx)dx

Evalute the following integrals int (x)/(x^(2) + 1) dx

Evaluate the following integrals : int1/(1+cos2x)dx

intcos(blog(x/a))dx

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following integration int cos^(3)x dx