Home
Class 12
PHYSICS
Evaluate: int(-1)^(4)3dx...

Evaluate:
`int_(-1)^(4)3dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-1}^{4} 3 \, dx \), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{-1}^{4} 3 \, dx \] ### Step 2: Factor out the constant Since 3 is a constant, we can factor it out of the integral: \[ I = 3 \int_{-1}^{4} dx \] ### Step 3: Evaluate the integral of \( dx \) The integral of \( dx \) is simply \( x \). Therefore, we have: \[ I = 3 [x]_{-1}^{4} \] ### Step 4: Apply the limits of integration Now we need to evaluate \( x \) at the upper limit (4) and the lower limit (-1): \[ I = 3 [4 - (-1)] \] ### Step 5: Simplify the expression This simplifies to: \[ I = 3 [4 + 1] = 3 \times 5 \] ### Step 6: Calculate the final result Finally, we calculate: \[ I = 15 \] Thus, the value of the integral \( \int_{-1}^{4} 3 \, dx \) is \( 15 \). ---

To evaluate the integral \( \int_{-1}^{4} 3 \, dx \), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{-1}^{4} 3 \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_-1^(2)f(x)dxdot

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

Evaluate int_(1)^(3)x^(3)dx

Evaluate: int_(4)^(1)1/x dx

int_(-1)^(1)(3x+4)dx

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

Evaluate : int_(1)^(4) (1)/(sqrt(x)) dx

Evaluate int_(0)^(pi//4)(dx)/(1+sinx)

Evaluate int_(1)^(4) (ax^(2)+bx+c)dx .