Home
Class 12
PHYSICS
Evaluate: int(1)^(2)(3x^(2)+2x+1)dx...

Evaluate: `int_(1)^(2)(3x^(2)+2x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{1}^{2} (3x^{2} + 2x + 1) \, dx \), we will follow these steps: ### Step 1: Set up the integral Let \( I = \int_{1}^{2} (3x^{2} + 2x + 1) \, dx \). ### Step 2: Integrate the function We will integrate each term in the integrand separately: - The integral of \( 3x^{2} \) is \( \frac{3}{3} x^{3} = x^{3} \). - The integral of \( 2x \) is \( \frac{2}{2} x^{2} = x^{2} \). - The integral of \( 1 \) is \( x \). Thus, we have: \[ I = \left[ x^{3} + x^{2} + x \right]_{1}^{2} \] ### Step 3: Evaluate the definite integral at the limits Now we will evaluate the expression at the upper limit (2) and the lower limit (1): 1. Calculate at \( x = 2 \): \[ 2^{3} + 2^{2} + 2 = 8 + 4 + 2 = 14 \] 2. Calculate at \( x = 1 \): \[ 1^{3} + 1^{2} + 1 = 1 + 1 + 1 = 3 \] ### Step 4: Subtract the lower limit from the upper limit Now we subtract the value at the lower limit from the value at the upper limit: \[ I = 14 - 3 = 11 \] ### Final Answer Thus, the value of the integral \( \int_{1}^{2} (3x^{2} + 2x + 1) \, dx \) is \( 11 \). ---

To evaluate the integral \( \int_{1}^{2} (3x^{2} + 2x + 1) \, dx \), we will follow these steps: ### Step 1: Set up the integral Let \( I = \int_{1}^{2} (3x^{2} + 2x + 1) \, dx \). ### Step 2: Integrate the function We will integrate each term in the integrand separately: - The integral of \( 3x^{2} \) is \( \frac{3}{3} x^{3} = x^{3} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(1)^(3)(x^(2)-2x)dx

Evaluate int _(1)^(3) x^2 dx

Evaluate: int_(-1)^0(dx)/(x^2+2x+2)

Evaluate: int_(-1)^0(dx)/(x^2+2x+2)

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

Evaluate int_(-2)^(2) (x^(3)+1)dx

Evaluate : int (3x+1)/(2x^(2)-2x+3)dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate : int_(0)^(1) (1-x)^(3//2) dx