Home
Class 12
PHYSICS
Evaluate: underset(0)overset(pi//4)intsi...

Evaluate: `underset(0)overset(pi//4)intsinxdx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_0^{\frac{\pi}{4}} \sin x \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_0^{\frac{\pi}{4}} \sin x \, dx \] ### Step 2: Find the antiderivative of \( \sin x \) The antiderivative (or integral) of \( \sin x \) is: \[ -\cos x \] ### Step 3: Apply the limits of integration Now we apply the limits from \( 0 \) to \( \frac{\pi}{4} \): \[ I = \left[-\cos x\right]_0^{\frac{\pi}{4}} = -\cos\left(\frac{\pi}{4}\right) - \left(-\cos(0)\right) \] This simplifies to: \[ I = -\cos\left(\frac{\pi}{4}\right) + \cos(0) \] ### Step 4: Evaluate \( \cos\left(\frac{\pi}{4}\right) \) and \( \cos(0) \) We know that: \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \quad \text{and} \quad \cos(0) = 1 \] Substituting these values into the equation gives: \[ I = -\frac{1}{\sqrt{2}} + 1 \] ### Step 5: Simplify the expression Now, we can combine the terms: \[ I = 1 - \frac{1}{\sqrt{2}} \] To express this in a single fraction, we can write: \[ I = \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{\sqrt{2} - 1}{\sqrt{2}} \] ### Final Result Thus, the value of the integral is: \[ \int_0^{\frac{\pi}{4}} \sin x \, dx = \frac{\sqrt{2} - 1}{\sqrt{2}} \] ---

To evaluate the integral \( \int_0^{\frac{\pi}{4}} \sin x \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_0^{\frac{\pi}{4}} \sin x \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx is (pi-1)/(k) . The value of k is ________.

Evaluate the following definite integrals underset(0)overset(pi//2)intsin^(2)xdx

The value of underset(0)overset(pi//2)int logtan xdx , is

Area bounded by the curves y = 1 - 2^(1 + sin x), x in [0, (pi)/(2)] where underset(0)overset(pi//2)(int) 2^(sin x) dx = k

Evaluate the following definite integrals underset(0)overset(pi//2)int(1+sinx)^(3)cosxdx

Evaluate the following definite integrals underset(0)overset(pi//4)int(dx)/(1+cos2x)

Evaluate the following definite integrals underset(0)overset(pi//4)inttan^(3)x.sec^(2)xdx

Evaluate the following definite integrals underset(pi//6)overset(pi//3)intcot^(2)xdx

Evaluate the following definite integrals underset(0)overset(1//2)intsqrt(19+4x)dx

If [*] denots the greatest integer function then the value of the integeral underset(-pi//2)overset(pi//2)int([(x)/(pi)]+0.5) dx , is