Home
Class 12
PHYSICS
Evaluate: intsec(2x+3)tan(2x+3)dx...

Evaluate: `intsec(2x+3)tan(2x+3)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sec(2x + 3) \tan(2x + 3) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sec(2x + 3) \tan(2x + 3) \, dx \] We know that: \[ \sec(x) = \frac{1}{\cos(x)} \quad \text{and} \quad \tan(x) = \frac{\sin(x)}{\cos(x)} \] Thus, we can rewrite the integral as: \[ \int \frac{\sin(2x + 3)}{\cos(2x + 3)} \cdot \frac{1}{\cos(2x + 3)} \, dx = \int \frac{\sin(2x + 3)}{\cos^2(2x + 3)} \, dx \] ### Step 2: Use Substitution Let’s use substitution to simplify the integral. We set: \[ t = \cos(2x + 3) \] Then, we differentiate both sides: \[ \frac{dt}{dx} = -2 \sin(2x + 3) \quad \Rightarrow \quad dt = -2 \sin(2x + 3) \, dx \quad \Rightarrow \quad dx = \frac{dt}{-2 \sin(2x + 3)} \] ### Step 3: Substitute in the Integral Substituting \( t \) and \( dx \) into the integral, we have: \[ \int \frac{\sin(2x + 3)}{t^2} \cdot \frac{dt}{-2 \sin(2x + 3)} = \int \frac{1}{-2t^2} \, dt \] ### Step 4: Integrate Now we can integrate: \[ \int \frac{1}{-2t^2} \, dt = -\frac{1}{2} \int t^{-2} \, dt = -\frac{1}{2} \left( -\frac{1}{t} \right) = \frac{1}{2t} + C \] ### Step 5: Substitute Back Now, we substitute back \( t = \cos(2x + 3) \): \[ \frac{1}{2 \cos(2x + 3)} + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \sec(2x + 3) \tan(2x + 3) \, dx = \frac{1}{2 \cos(2x + 3)} + C \]

To evaluate the integral \( \int \sec(2x + 3) \tan(2x + 3) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sec(2x + 3) \tan(2x + 3) \, dx \] We know that: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate intsec^2x\dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

Evaluate: intsec^3x\ dx

Evaluate: intsec^6x\ dx

Evaluate: intsec^4x\ dx

Evaluate: intsec^4x\ dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

Evaluate : intsec^4 x tan x dx.

intsec^4(x/2)tan(x/2)dx

Evaluate: intsec^2x/sqrt (1+tanx)dx