Home
Class 12
PHYSICS
If log2=0.3010andlog3=0.4771, find the v...

If `log2=0.3010andlog3=0.4771`, find the value of
log 6

A

3

B

0.22

C

6

D

0.77

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log 6 \) given \( \log 2 = 0.3010 \) and \( \log 3 = 0.4771 \), we can use the properties of logarithms. ### Step-by-step Solution: 1. **Express \( \log 6 \) in terms of \( \log 2 \) and \( \log 3 \)**: \[ \log 6 = \log (2 \times 3) \] Using the property of logarithms that states \( \log (a \times b) = \log a + \log b \), we can rewrite this as: \[ \log 6 = \log 2 + \log 3 \] 2. **Substitute the known values**: Now, we can substitute the values of \( \log 2 \) and \( \log 3 \) into the equation: \[ \log 6 = 0.3010 + 0.4771 \] 3. **Perform the addition**: Adding the two values together: \[ \log 6 = 0.3010 + 0.4771 = 0.7781 \] 4. **Final result**: Thus, the value of \( \log 6 \) is: \[ \log 6 \approx 0.7781 \] This can be rounded to \( 0.77 \). ### Conclusion: The value of \( \log 6 \) is approximately \( 0.77 \).

To find the value of \( \log 6 \) given \( \log 2 = 0.3010 \) and \( \log 3 = 0.4771 \), we can use the properties of logarithms. ### Step-by-step Solution: 1. **Express \( \log 6 \) in terms of \( \log 2 \) and \( \log 3 \)**: \[ \log 6 = \log (2 \times 3) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If log2=0.3010andlog3=0.4771 , find the value of log 5

If log2=0.3010andlog3=0.4771 , find the value of logsqrt(24)

If log2=0.301 and log3=0.477, find the value of log(3.375).

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 12 (ii) log 1.2 (iii) log 3.6 (iv) log 15 (v) log 25 (vi) (2)/(3) log 8

Find the value of : log _5 0.2

If log2=0.301 and log3=0.477 , find the number of digits in: (3^15xx2^10)

Find the value of : log_(0.2) 5

Find the value of : log _ 2 ,0.125

If log2=0.301 and log3=0.477, find the number of integers in 6^(20)