Home
Class 12
PHYSICS
Without using log tables evaluate: 2log(...

Without using log tables evaluate: `2log_(10)5+log_(10)8-(1)/(2)log_(10)4`

A

1

B

2

C

5

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(2\log_{10}5 + \log_{10}8 - \frac{1}{2}\log_{10}4\) without using logarithm tables, we can apply the properties of logarithms step by step. ### Step-by-Step Solution: 1. **Write down the expression:** \[ 2\log_{10}5 + \log_{10}8 - \frac{1}{2}\log_{10}4 \] 2. **Apply the power rule of logarithms:** The power rule states that \(n \log_b a = \log_b (a^n)\). Therefore, we can rewrite \(2\log_{10}5\) and \(\frac{1}{2}\log_{10}4\): \[ \log_{10}(5^2) + \log_{10}8 - \log_{10}(4^{1/2}) \] This simplifies to: \[ \log_{10}(25) + \log_{10}(8) - \log_{10}(2) \] 3. **Combine the logarithms using the property \( \log_a b + \log_a c = \log_a (bc) \):** \[ \log_{10}(25 \cdot 8) - \log_{10}(2) \] 4. **Now apply the property \( \log_a b - \log_a c = \log_a \left(\frac{b}{c}\right) \):** \[ \log_{10}\left(\frac{25 \cdot 8}{2}\right) \] 5. **Calculate the expression inside the logarithm:** \[ 25 \cdot 8 = 200 \quad \text{and} \quad \frac{200}{2} = 100 \] Thus, we have: \[ \log_{10}(100) \] 6. **Recognize that \(100\) can be expressed as \(10^2\):** \[ \log_{10}(10^2) \] 7. **Apply the power rule again:** \[ 2\log_{10}(10) \] 8. **Since \(\log_{10}(10) = 1\):** \[ 2 \cdot 1 = 2 \] ### Final Answer: \[ 2\log_{10}5 + \log_{10}8 - \frac{1}{2}\log_{10}4 = 2 \]

To evaluate the expression \(2\log_{10}5 + \log_{10}8 - \frac{1}{2}\log_{10}4\) without using logarithm tables, we can apply the properties of logarithms step by step. ### Step-by-Step Solution: 1. **Write down the expression:** \[ 2\log_{10}5 + \log_{10}8 - \frac{1}{2}\log_{10}4 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

log4^2_10 + log4_10

Prove that : (log_(2)10)(log_(2)80)-(log_(2)5)(log_(2)160)=4 .

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

log10 - log5

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

Find the relation between x and y: log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y "

If log_(10)m=(1)/(2) , then log_(10)10m^(2)=

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}