Home
Class 12
PHYSICS
Solve int(sqrt(1+2x)-sqrt(1-2x))dx...

Solve `int(sqrt(1+2x)-sqrt(1-2x))dx`

Text Solution

AI Generated Solution

To solve the integral \( \int (\sqrt{1 + 2x} - \sqrt{1 - 2x}) \, dx \), we can break it down into two separate integrals. Here’s a step-by-step solution: ### Step 1: Separate the Integral We start by separating the integral into two parts: \[ \int (\sqrt{1 + 2x} - \sqrt{1 - 2x}) \, dx = \int \sqrt{1 + 2x} \, dx - \int \sqrt{1 - 2x} \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sqrt (x)+1/sqrt (x))^2dx

int1/(sqrt(x+3)-sqrt(x+2))\ dx

Evaluate: int1/(sqrt(1-2x)+sqrt(3-2x))\ dx

int(x-2)sqrt((1+x)/(1-x))dx

int 1/((1-x^2)sqrt(1+x^2))dx

int(1-x^(2))sqrt(x)dx

Find the integral int(sqrt(x)-1/(sqrt(x)))^2dx

Evaluate: int(2x)/sqrt (1-x^4)dx

Solve int_1^2 (sqrt(x))/(sqrt(x)+sqrt(3-x))dx

int sqrt(2x-1) dx