Home
Class 12
PHYSICS
Find the unit vector perpendicular to th...

Find the unit vector perpendicular to the vectors `vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector perpendicular to the vectors \(\vec{A} = \hat{i} + 2\hat{j} - 3\hat{k}\) and \(\vec{B} = -\hat{i} + \hat{j} - \hat{k}\), we can follow these steps: ### Step 1: Calculate the Cross Product \(\vec{A} \times \vec{B}\) The cross product of two vectors can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors. \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ -1 & 1 & -1 \end{vmatrix} \] ### Step 2: Expand the Determinant Using the determinant formula, we can expand it as follows: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} 2 & -3 \\ 1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -3 \\ -1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 2 & -3 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (-3)(1) = -2 + 3 = 1 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 1 & -3 \\ -1 & -1 \end{vmatrix} = (1)(-1) - (-3)(-1) = -1 - 3 = -4 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = (1)(1) - (2)(-1) = 1 + 2 = 3 \] Putting it all together, we have: \[ \vec{A} \times \vec{B} = 1\hat{i} + 4\hat{j} + 3\hat{k} = \hat{i} + 4\hat{j} + 3\hat{k} \] ### Step 3: Calculate the Magnitude of \(\vec{A} \times \vec{B}\) Now, we need to find the magnitude of the cross product: \[ |\vec{A} \times \vec{B}| = \sqrt{(1)^2 + (4)^2 + (3)^2} = \sqrt{1 + 16 + 9} = \sqrt{26} \] ### Step 4: Find the Unit Vector The unit vector \(\hat{n}\) in the direction of \(\vec{A} \times \vec{B}\) is given by: \[ \hat{n} = \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|} = \frac{\hat{i} + 4\hat{j} + 3\hat{k}}{\sqrt{26}} \] ### Final Answer Thus, the unit vector perpendicular to both \(\vec{A}\) and \(\vec{B}\) is: \[ \hat{n} = \frac{1}{\sqrt{26}}\hat{i} + \frac{4}{\sqrt{26}}\hat{j} + \frac{3}{\sqrt{26}}\hat{k} \]

To find the unit vector perpendicular to the vectors \(\vec{A} = \hat{i} + 2\hat{j} - 3\hat{k}\) and \(\vec{B} = -\hat{i} + \hat{j} - \hat{k}\), we can follow these steps: ### Step 1: Calculate the Cross Product \(\vec{A} \times \vec{B}\) The cross product of two vectors can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors. \[ \vec{A} \times \vec{B} = \begin{vmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find a unit vectro perpendicular to the vectors veca=3hati+2hatj-hatk and vecb=12hati+5hatj-5hatk Also determine the sine of the angle between veca and vecb .

Find a vector perpendicular to vector vecA=(hati+2hatj-3hatk) as well as vecB=(hati+hatj-hatk)

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

Find a unit vector perpendicular to both the vectors. vecA = 3hati + hatj + 2hatk and vecB = 2hati - 2hatj + 4hatk .

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

The number of unit vectors perpendicular to the plane of vectors veca=2hati-6hat j-3hatk and vecb=4hati+3hatj-hatk is/are

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a vector of magnitude 9 units and perpendicular to the vectors veca=4hati-hatj+hatk and vecb= -2hati+hatj-2hatk .