Home
Class 12
PHYSICS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the following functions.
`f(x)=(x^(3))/(3)-(x^(2))/(2)-6x+8`

Text Solution

AI Generated Solution

To find the maximum and minimum values of the function \( f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 8 \), we will follow these steps: ### Step 1: Find the first derivative of the function To find the critical points where the maximum and minimum values occur, we first need to differentiate the function. \[ f'(x) = \frac{d}{dx}\left(\frac{x^3}{3} - \frac{x^2}{2} - 6x + 8\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

Find the maximum and minimum values of the following functions. f(x)=2x^(3)-15x^(2)+36x+10

Find the maximum and minimum values of the following functions. f(x)=sinx+sqrt(3)cosx

Find the maximum or minimum values of the following functions: (i) x^(3)-2x^(2)+x+3

Find the maximum and minimum values of the function f(x)=tanx-2x .

Find the maximum and minimum values of the function f(x)=4/(x+2)+x .

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

Find the maximum and the minimum values, if any, of the following functions f(x)=3x^2+6x+8,x in R

Find the maximum and the minimum values, if any, of the following functions f(x)=3x^2+6x+8,x in R

Find the maximum and minimum values, if any, of the following functions given by(i) f(x)=(2x-1)^2+3 (ii) f(x)=9x^2+12 x+2 (iii) f(x)=-(x-1)^2+10 (iv) g(x)=x^3+1