Home
Class 12
PHYSICS
int ((x^2-2x+3)/x^4)dx...

`int ((x^2-2x+3)/x^4)dx`

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{x^2 - 2x + 3}{x^4} \, dx \), we can break it down step by step. ### Step 1: Rewrite the integrand First, we can simplify the integrand by dividing each term in the numerator by \( x^4 \): \[ \int \frac{x^2}{x^4} - \frac{2x}{x^4} + \frac{3}{x^4} \, dx = \int \left( x^{-2} - 2x^{-3} + 3x^{-4} \right) \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^2dx)/(4+x^2)

int((x-2)^3)/x^2dx =?

Evaluate: int(x-3)/(x^2+2x-4)\ dx

int( x^3)/(x^2-2)dx

int (x+1)/(2x^2+3x+4) dx

int((x-4)^(3))/(x^(2))dx

int((x-4)^2)/x^3dx =?

int (2x^3)/(4+(x^4)^2) dx

int(a^x+a^(2x))/a^(4x)dx

int (x^(2))/(x^(2) +4) dx=?