Home
Class 12
PHYSICS
If |vecA + vecB| = |vecA - vecB|, then t...

If `|vecA + vecB| = |vecA - vecB|`, then the angle between `vecA and vecB` will be

Text Solution

AI Generated Solution

To solve the problem, we start with the given condition: **Given:** \[ |\vec{A} + \vec{B}| = |\vec{A} - \vec{B}| \] ### Step 1: Use the formula for the magnitude of vectors We know that the magnitude of the sum and difference of two vectors can be expressed as: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos\theta} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca . vecb =ab then the angle between veca and vecb is

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If | veca + vecb|=| veca - vecb| , then what is the angle between veca and vecb ?

If |veca+ vecb| lt | veca- vecb| , then the angle between veca and vecb can lie in the interval