Home
Class 12
PHYSICS
Add vectors vecA,vecB and vecC each havi...

Add vectors `vecA,vecB and vecC` each having magnitude of 100 unit and inclined to the X-axis at angles `45^@, 135^@ and 315^@` respectively.

Text Solution

Verified by Experts

`|R|=100` unit inclined at `45^(@)` to the x-axis
Promotional Banner

Similar Questions

Explore conceptually related problems

Add vectors vecA,vecB and vecC which have equal magnitude s of 50 unit and are inclined at angles of 45^(@), 135^(@) and 315^(@) respectively from x-axos.

Add vectors vecA,vecB and vecC which have equal magnitude s of 50 unit and are inclined at angles of 45^(@), 135^(@) and 315^(@) respectively from x-axos.

Let vecA and vecB be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angles 30^@ and 60^@ respectively, find the resultant.

Let vecA and vecB be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angles 30^@ and 60^@ respectively, find the resultant.

If veca and vecb are unit vectors inclined to x-axis at angle 30^(@) and 120^(@) then |veca +vecb| equals

A magnitude of vector vecA,vecB and vecC are respectively 12, 5 and 13 units and vecA+vecB=vecC then the angle between vecA and vecB is

Three vectors vecA,vecB and vecC are such that vecA=vecB+vecC and their magnitudes are in ratio 5:4:3 respectively. Find angle between vector vecA and vecC

Three vectors vecA,vecB and vecC are such that vecA=vecB+vecC and their magnitudes are in ratio 5:4:3 respectively. Find angle between vector vecA and vecB

If veca and vecb are two vectors of magnitude 1 inclined at 120^(@) , then find the angle between vecb and vecb-veca .

Two vectors vecA and vecB have magnitude in the ratio 1:2 respectively. Their difference vector has as magnitude of 10 units, and the angle between vecA & vecB is 120^(@) . The magnitude of vecA and vecB are :