Home
Class 12
PHYSICS
The linear mass density lambda of a rod ...

The linear mass density lambda of a rod AB is given by `lambda =alpha+betax` kg/m taking O as origin. Find the location of the centre of mass from the end A?

Text Solution

AI Generated Solution

To find the location of the center of mass of a rod AB with a linear mass density given by \(\lambda = \alpha + \beta x\) kg/m, we will follow these steps: ### Step 1: Understand the Problem We have a rod of length \(L\) placed along the x-axis. The linear mass density \(\lambda\) varies with position \(x\). We need to find the x-coordinate of the center of mass from the end A (which we can consider as \(x = 0\)). ### Step 2: Define the Differential Mass Element The differential mass element \(dm\) can be expressed in terms of the linear mass density: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF A PARTICLES & ROTATIONAL MOTION

    VMC MODULES ENGLISH|Exercise SOLVED EXAMPLES|20 Videos
  • SYSTEM OF A PARTICLES & ROTATIONAL MOTION

    VMC MODULES ENGLISH|Exercise PRACTICE EXERCISE-1|4 Videos
  • SIMPLE HARMONIC MOTION

    VMC MODULES ENGLISH|Exercise 7-previous year question|46 Videos
  • SYSTEM OF PARTICLES AND ROTATIONAL MOTION

    VMC MODULES ENGLISH|Exercise IMPECCABLE|56 Videos

Similar Questions

Explore conceptually related problems

The liner density of a rod of length 2m varies as lambda = (2 + 3x) kg/m, where x is distance from end A . The distance of a center of mass from the end B will be

If the linear mass density of a rod of length 3 m (lying from y=0 to y=3 m) varies as lambda =(2+y)kg/m,then position of the centre of mass of the rod from y=0 is nearly at

The linear density of a thin rod of length 1m lies as lambda = (1+2x) , where x is the distance from its one end. Find the distance of its center of mass from this end.

The linear density of a non - uniform rod of length 2m is given by lamda(x)=a(1+bx^(2)) where a and b are constants and 0lt=xlt=2 . The centre of mass of the rod will be at. X=

Two particles of masses 1kg and 2kg are located at x=0 and x=3m . Find the position of their centre of mass.

Two particles of masses 1kg and 2kg are located at x=0 and x=3m . Find the position of their centre of mass.

The density of a thin rod of length l varies with the distance x from one end as rho=rho_0(x^2)/(l^2) . Find the position of centre of mass of rod.

You are given a rod of length L. The linear mass density is lambda such that lambda=a+bx . Here a and b are constants and the mass of the rod increases as x decreases. Find the mass of the rod

A non–uniform thin rod of length L is placed along x-axis as such its one of ends at the origin. The linear mass density of rod is lambda=lambda_(0)x . The distance of centre of mass of rod from the origin is :

A rod length L and mass M is placed along the x -axis with one end at the origin, as shown in the figure above. The rod has linear mass density lamda=(2M)/(L^(2))x, where x is the distance from the origin. Which of the following gives the x -coordinate of the rod's center of mass?