Home
Class 12
PHYSICS
Which of the following gives the value o...

Which of the following gives the value of magnetic field according to, Biot-Savart’s law

A

`I Delta lsin theta/r^(2)`

B

`mu_(0)/4pi iDelta l sin theta/r`

C

`mu_(0)/4pi iDeltal sin theta/r^(2)`

D

`mu_(0)/4pi iDelta sin theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question regarding the value of the magnetic field according to Biot-Savart's law, we can follow these steps: ### Step 1: Understand Biot-Savart's Law Biot-Savart's law describes the magnetic field generated by a current-carrying conductor. It states that the magnetic field (dB) at a point in space due to a small segment of current (I) is directly proportional to the current, the length of the segment (dl), and the sine of the angle (θ) between the segment and the line connecting the segment to the point where the field is measured. ### Step 2: Write the Formula The mathematical expression for Biot-Savart's law is given by: \[ dB = \frac{\mu_0}{4\pi} \frac{I \, dl \, \sin \theta}{r^2} \] Where: - \( dB \) is the infinitesimal magnetic field produced by the current element. - \( \mu_0 \) is the permeability of free space. - \( I \) is the current flowing through the conductor. - \( dl \) is the infinitesimal length of the conductor. - \( \theta \) is the angle between the current element and the line connecting the element to the point where the field is measured. - \( r \) is the distance from the current element to the point of interest. ### Step 3: Simplify the Expression From the formula, we can see that the magnetic field \( B \) can be derived by integrating \( dB \) over the entire length of the conductor. However, for a small segment, we can directly use: \[ B = \frac{\mu_0}{4\pi} \frac{I \, dl \, \sin \theta}{r^2} \] ### Step 4: Identify the Correct Option When looking at the options provided in the question, we need to match the derived formula with the options. The correct expression according to Biot-Savart's law is: \[ B = \frac{\mu_0 I \, dl \, \sin \theta}{4\pi r^2} \] If this matches one of the options given in the question, that option is the correct answer. ### Conclusion After analyzing the formula and the options, we conclude that the correct expression for the magnetic field according to Biot-Savart's law is: \[ B = \frac{\mu_0 I \, dl \, \sin \theta}{4\pi r^2} \]
Promotional Banner

Topper's Solved these Questions

  • MOVING CHARGES & MAGNETISM

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-C|10 Videos
  • MOVING CHARGES & MAGNETISM

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-D|12 Videos
  • MOVING CHARGES & MAGNETISM

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-A|10 Videos
  • Motion in Two Dimensions

    VMC MODULES ENGLISH|Exercise MCQ|2 Videos
  • PROPERTIES OF MATTER

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive) Level - 2 (MATRIX MATCH TYPE)|1 Videos

Similar Questions

Explore conceptually related problems

State Biot-Savart law.

Which of the following given the value of magnetic field due to small current elememt accordong to Biot -Savart's law

Which of the following is not correct about the magnetic field lines?

Which of the following weighs less when weighed in magnetic field?

Which of the following is responsible for the earth's magnetic field?

(A) : When the observation point lies along the length of the current element, magnetic field is zero. (R) : According to Biot-Savart's law field is defined only when position vector of a point relative to current element is non zero.

Which of these materials requires the least value of magnetic field strength to magnetize it ?

In which of the following situations, the magnetic field can accelerate a charge particle at rest? I. When the magnetic field is uniform with respect to time as well as position II. When the magnetic field is time varying but uniform w.r.t. position III. When the magnetic field is time independent but position dependent

Which of the following is according to Boyle's law?

Which of the following field lines pattern could represent a magnetic field?