Home
Class 12
CHEMISTRY
For the reaction N2(g) + 3H2(g) to 2NH3(...

For the reaction `N_2(g) + 3H_2(g) to 2NH_3(g) " if " (Delta[NH_3])/(Deltat) = 4xx 10^(-4) mol.l^(-1) s^(-1)`, the value of `(-Delta[H_2])/(Deltat)` would be

A

`1xx 10^(-4) mol.l^(-1) s^(-1)`

B

`3 xx 10^(-4) mol.l^(-1)s^(-1)`

C

`4xx 10^(-4) mol.l^(-1)s^(-1)`

D

`6 xx 10^(-4)mol.l^(-1)s^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the rate of change of the concentration of hydrogen gas (H₂) based on the given rate of change of ammonia (NH₃) concentration. We will use the stoichiometry of the reaction to relate the rates. ### Step-by-Step Solution: 1. **Identify the Reaction:** The balanced chemical reaction is: \[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \] 2. **Understand the Rate Expression:** The rate of the reaction can be expressed in terms of the change in concentrations of the reactants and products. The rate of formation of NH₃ is given by: \[ \text{Rate} = \frac{\Delta [NH_3]}{\Delta t} = \frac{1}{2} \left(-\frac{\Delta [N_2]}{\Delta t}\right) = \frac{1}{3} \left(-\frac{\Delta [H_2]}{\Delta t}\right) \] Here, the stoichiometric coefficients (2 for NH₃, 3 for H₂) are used to relate the rates. 3. **Given Information:** We are given: \[ \frac{\Delta [NH_3]}{\Delta t} = 4 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] 4. **Relate the Rate of H₂ to NH₃:** Using the stoichiometry of the reaction, we can relate the rate of change of H₂ to NH₃: \[ -\frac{\Delta [H_2]}{\Delta t} = \frac{3}{2} \cdot \frac{\Delta [NH_3]}{\Delta t} \] 5. **Substitute the Given Rate:** Now, substitute the given value of \(\frac{\Delta [NH_3]}{\Delta t}\): \[ -\frac{\Delta [H_2]}{\Delta t} = \frac{3}{2} \cdot (4 \times 10^{-4}) \, \text{mol L}^{-1} \text{s}^{-1} \] 6. **Calculate the Rate of Change of H₂:** \[ -\frac{\Delta [H_2]}{\Delta t} = \frac{3 \times 4}{2} \times 10^{-4} = 6 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] 7. **Final Answer:** Therefore, the value of \(-\frac{\Delta [H_2]}{\Delta t}\) is: \[ 6 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction N_(2) + 3H_(2) to 2NH_(3) if (Delta[NH_(3)])/(Deltat) = 2 xx 10^(-4) mol L^(-1)s^(-1) , the value of (-Delta[H_(2)])/(Deltat) would be

For the reaction N_(2)(g) + 3H_(2)(g) hArr 2NH_(3)(g), DeltaH=?

For the reaction N_(2)+3H_(2) rarr 2NH_(3) , if (d[NH_(3)])/(dt).=4xx10^(-4) mol L^(-1)s^(-1) , the value of (-d[H_(2)])/(dt) would be

For the reaction N_(2)+3H_(2) rarr 2NH_(3) , if (d[NH_(3)])/(dt).=4xx10^(-4) mol L^(-1)s^(-1) , the value of (-d[H_(2)])/(dt) would be

For the reaction , N_2+3H_2rarr2NH_3 if (d[NH_3])/(dt)=2xx10^(-4)"mol L"^(-1) s^(-1) , the value of (-d[H_2])/(dt) would be

For the reaction, N_2[g] + 3H_2[g] hArr 2NH_3[g] , Delta H = …

For the reactions, N_2(g) + 3H_2(g) hArr 2NH_3(g), " " K_p=K_c (RT)^(…..)

For the reaction Fe_2N(s)+(3)/(2)H_2(g)=2Fe(s)+NH_3(g)

For the reaction, N_(2)(g)+3H_(2)(g) hArr 2NH_(3)(g) , the units of K_(p) are …………

In a reaction N_(2(g))+3H_(2(g))to2NH_(3(g)) rate of appearance of NH_(3) is 2.5xx10^(-4)molL^(-1)sec^(-1) then rate of reaction and rate of disappearance of H_(2) respectively is :-