Home
Class 12
MATHS
Let I(1) = int(0)^(pi/4)x^(2008)(tanx )^...

Let `I_(1) = int_(0)^(pi/4)x^(2008)(tanx )^(2008)dx, I_(2) = int_(0)^(pi/4) x ^(2009)(tan x)^(2009)dx , I_(3) = int_(0)^(pi/4) x^(2010)(tanx)^(2010)dx` then which one of the following inequalities hold good?

A

`I_(2)lt I_(3)lt I_(1)`

B

`I_(1)lt I_(2)lt I_(3)`

C

`I_(3)lt I_(1)lt I_(2)`

D

` I_(3)lt I_(2)lt I_(1)`

Text Solution

Verified by Experts

The correct Answer is:
D

Integrand are ` I_3 lt I_2 lt I_1` in `(0, (pi)/(4))`.
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/4)tan^(3)dx

int_(0)^(pi/4) sin 2x dx

int_(0)^(pi//4) cos^(2) x dx

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

8. int_0^(pi/4) log(1+tanx)dx

int_(0)^( pi/4)(dx)/(1+sin x)

int_(0)^( pi/4)(dx)/(1-sin x)

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi//2)(dx)/(1+tanx) is

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx