Home
Class 12
MATHS
The number of continous and derivable fu...

The number of continous and derivable function(s) f(x) such that f(1) = -1 , f(4) = 7 and `f'(x) gt 3` for all x `in` R is are :

A

0

B

1

C

3

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
A

Using LMVT in [1,4] for y =f(s)
there must exist atleast one ` c in ( 1,4)` such that
` f.(c ) =(f(4) - f(1))/(4-1) = (8)/(3)` but ` f.(x) gt 3 AA x in R `
Hence , no such function exists .
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to

Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x/7 AA x in R, then f(42) is

If f: R->R is an odd function such that f(1+x)=1+f(x) and x^2f(1/x)=f(x),x!=0 then find f(x)dot

Let F : R to R be a thrice differentiable function . Suppose that F(1)=0,F(3)=-4 and F(x) lt 0 for all x in (1,3) . f(x) = x F(x) for all x inR . If int_(1)^(3)x^(2)F'(x)dx=-12 andint_(1)^(3)x^(3)F'' (x)dx =40 , then the correct expression (s) is //are

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then f(x) is

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2 and f(1)=1, then

Let f(x) be a continuous function, AA x in R, f(0) = 1 and f(x) ne x for any x in R , then show f(f(x)) gt x, AA x in R^(+)

Let f(x) be polynomial function of defree 2 such that f(x)gt0 for all x in R. If g(x)=f(x)+f'(x)+f''(x) for all x, then

Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 for all x in (0,1) and f((1)/(2))=(sqrt(3))/(2) . Suppose for all x, underset(x to x)lim(overset(1)underset(0)int sqrt(1(f(s))^(2))dxoverset(x)underset(0)int sqrt(1(f(s))^(2))ds)/(f(t)-f(x))=f(x) Then, the value of f((1)/(4)) belongs to