Home
Class 12
MATHS
The range of the function f(x) = sqrt(4 ...

The range of the function f(x) = `sqrt(4 - x^(2)) + sqrt(x^(2) - 1)` is :

A

`[sqrt(3), sqrt(7)]`

B

`[sqrt(3), sqrt(5)]`

C

`[sqrt(2), sqrt(3)]`

D

`[sqrt(3),sqrt(6)]`

Text Solution

Verified by Experts

The correct Answer is:
D

`Let y = f(x) = sqrt(4-x^(2)) + sqrt(x^(2) -1)`
Clearly domain of f(x) is `[-2,-1] cup [1,2]`
Now , `y^(2) = 3 + 2 sqrt(((3)/(2))^(2) - (x^2 - (5)/(2))^(2)) :. y_(max)^(2) ( x = pm sqrt(5)/2) = 6 and y_("min")^(2) ( x = pm 1 or pm 2 ) =3`
Hence range of f(x) is `[sqrt(3) , sqrt(6)] `
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

Find the domain of the function f(x) = sqrt( 4 - x) + (1)/( sqrt( x^(2) - 1))

The domain of the function f(x)=4-sqrt(x^(2)-9) is

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

Find the range of the function f(x)=2sqrt(x-2)+sqrt(4-x)

Find the range of the function f(x)=2sqrt(x-2)+sqrt(4-x)

The range of the function f(x) = tan sqrt((pi^(2))/(9)-x^(2)) , is

The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The function f(x)=sqrt(1-sqrt(1-x^2))