Home
Class 12
MATHS
If A = [(1,2),(3,4)], then 2A^(-1)=...

If `A = [(1,2),(3,4)]`, then `2A^(-1)=`

A

`3I-A`

B

`5I-A`

C

`A-5I`

D

`3A+I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( 2A^{-1} \) for the matrix \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 1 \) - \( b = 2 \) - \( c = 3 \) - \( d = 4 \) Calculating the determinant: \[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a 2x2 matrix is obtained by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements. For matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of a matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we calculated: \[ A^{-1} = \frac{1}{-2} \cdot \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{-2} & \frac{-2}{-2} \\ \frac{-3}{-2} & \frac{1}{-2} \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \] ### Step 4: Calculate \( 2A^{-1} \) Now, we multiply the inverse of matrix \( A \) by 2: \[ 2A^{-1} = 2 \cdot \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 2 \cdot -2 & 2 \cdot 1 \\ 2 \cdot \frac{3}{2} & 2 \cdot -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} \] ### Final Result Thus, the final answer is: \[ 2A^{-1} = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} \] ---

To solve the problem of finding \( 2A^{-1} \) for the matrix \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[{:(3,2,1),(0,-1,-2),(-3,4,2):}] , find A^(-1)

Find additive inverse of A={:[(1,2,-1),(-4,3,-2),(1,-1,4)]:} .

Let A={:[(1,2),(3,4)]:},B={:[(-1,-2),(-4,-3)]:} , find AB and BA.

If A=[[-1,2],[3,4]] and B=[[2,-3],[5,1]] show that AB!=BA