Home
Class 12
MATHS
If the value of the sum n^(2) + n - sum...

If the value of the sum `n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3)` as n tends to infinity can be expressed in the form `(p)/(q)` find the least value of (p + q) where p, q `in N`

Text Solution

Verified by Experts

The correct Answer is:
`0017`

Consider
`sum_(k=1)^(n)(2k(k^(2) + 4k+3)-1)/(k^(2) + 4k+3) = sum(2k) -(1)/((k+1)(k+3))`
` =2sum k-(1)/(2) sum((1)/(k+1)-(1)/(k+3))`
`=(2(n)(n-1))/(2)(1)/(2)[(1)/(2) + (1)/(3)] = n^(2) +n-underset(n to oo)ubrace((1)/(2)[(1)/(2) + (1)/(3)])`
Hence , Sum ` =(n^(2) + n) -(n^(2) + n-(5)/(12)) =(5)/(12)`
`implies p=5, q=12 " "implies (p+q) = 17`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 5

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to