Home
Class 12
MATHS
Unit vector vecc is inclined at an ang...

Unit vector `vecc` is inclined at an angle `theta` to unit vectors `veca and vecb` which are perpendicular.
If `vecc=lambda(veca+vecb)+mu(veca xx vecb), lambda, mu` real, then `theta` belongs to:

A

`(-(pi)/(4),0)`

B

`[0,(pi)/(4))`

C

`[(3pi)/(4),pi)`

D

`[(pi)/(4),(3pi)/(4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information and derive the necessary relationships step by step. ### Step 1: Understand the vectors involved We have three unit vectors: \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The vectors \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other. Therefore, we know that: \[ \vec{a} \cdot \vec{b} = 0 \] ### Step 2: Express \(\vec{c}\) in terms of \(\vec{a}\) and \(\vec{b}\) The vector \(\vec{c}\) is given by: \[ \vec{c} = \lambda \vec{a} + \mu (\vec{a} \times \vec{b}) \] where \(\lambda\) and \(\mu\) are real numbers. ### Step 3: Calculate the dot product of \(\vec{c}\) with \(\vec{a}\) Taking the dot product of \(\vec{c}\) with \(\vec{a}\): \[ \vec{c} \cdot \vec{a} = (\lambda \vec{a} + \mu (\vec{a} \times \vec{b})) \cdot \vec{a} \] This simplifies to: \[ \vec{c} \cdot \vec{a} = \lambda (\vec{a} \cdot \vec{a}) + \mu ((\vec{a} \times \vec{b}) \cdot \vec{a}) \] Since \(\vec{a} \cdot \vec{a} = 1\) and \((\vec{a} \times \vec{b}) \cdot \vec{a} = 0\) (because the cross product is perpendicular to both \(\vec{a}\) and \(\vec{b}\)), we have: \[ \vec{c} \cdot \vec{a} = \lambda \] ### Step 4: Calculate the dot product of \(\vec{c}\) with \(\vec{b}\) Now, taking the dot product of \(\vec{c}\) with \(\vec{b}\): \[ \vec{c} \cdot \vec{b} = (\lambda \vec{a} + \mu (\vec{a} \times \vec{b})) \cdot \vec{b} \] This simplifies to: \[ \vec{c} \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}) + \mu ((\vec{a} \times \vec{b}) \cdot \vec{b}) \] Again, since \(\vec{a} \cdot \vec{b} = 0\) and \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\), we find: \[ \vec{c} \cdot \vec{b} = 0 \] ### Step 5: Calculate the magnitude of \(\vec{c}\) Since \(\vec{c}\) is a unit vector, we have: \[ \|\vec{c}\|^2 = 1 \] Calculating the magnitude: \[ \|\vec{c}\|^2 = (\lambda \vec{a} + \mu (\vec{a} \times \vec{b})) \cdot (\lambda \vec{a} + \mu (\vec{a} \times \vec{b})) \] This expands to: \[ \|\vec{c}\|^2 = \lambda^2 (\vec{a} \cdot \vec{a}) + \mu^2 ((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b})) + 2\lambda\mu (\vec{a} \cdot (\vec{a} \times \vec{b})) \] Since \(\vec{a} \cdot \vec{a} = 1\) and \((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = 1\) (because \(\|\vec{a} \times \vec{b}\| = 1\)), and the last term is zero: \[ 1 = \lambda^2 + \mu^2 \] ### Step 6: Relate \(\lambda\) and \(\mu\) to \(\theta\) From the earlier steps, we have: \[ \lambda = \cos \theta \] Substituting this into the equation: \[ 1 = \cos^2 \theta + \mu^2 \] This gives: \[ \mu^2 = 1 - \cos^2 \theta = \sin^2 \theta \] Thus, \(\mu = \sin \theta\) or \(\mu = -\sin \theta\). ### Step 7: Determine the range of \(\theta\) Since \(\mu^2 \geq 0\), we have: \[ 1 - \cos^2 \theta \geq 0 \implies \cos^2 \theta \leq 1 \] This means: \[ \cos \theta \in [-1, 1] \] From the earlier derived relationship, we have: \[ \cos \theta \leq \frac{1}{\sqrt{2}} \implies \theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \] ### Final Answer Thus, the angle \(\theta\) belongs to: \[ \theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \]

To solve the problem, we need to analyze the given information and derive the necessary relationships step by step. ### Step 1: Understand the vectors involved We have three unit vectors: \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The vectors \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other. Therefore, we know that: \[ \vec{a} \cdot \vec{b} = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

Let veca.vecb=0 where veca and vecb are unit vectors and the vector vecc is inclined an anlge theta to both veca and vecb. If vecc=mveca+nvecb + p(veca xx vecb) , (m,n,p in R) then

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

veca and vecc are unit collinear vectors and |vecb|=6 , then vecb-3vecc = lambda veca , if lambda is:

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals