Home
Class 12
MATHS
If mean deviations about median of x, 2x...

If mean deviations about median of `x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x` is 30, then `|x|` equals:-

A

12

B

11

C

10

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the absolute value of \( x \) given that the mean deviation about the median of the numbers \( x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x \) is 30. ### Step-by-step Solution: 1. **Identify the Numbers**: The numbers given are \( x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x \). 2. **Find the Median**: - Since there are 10 numbers (even count), the median is the average of the 5th and 6th terms. - The 5th term is \( 5x \) and the 6th term is \( 6x \). - Therefore, the median \( M \) is: \[ M = \frac{5x + 6x}{2} = \frac{11x}{2} \] 3. **Calculate the Mean Deviation**: - The mean deviation \( D \) about the median is given by: \[ D = \frac{1}{n} \sum_{i=1}^{n} |x_i - M| \] - Here, \( n = 10 \) and \( M = \frac{11x}{2} \). - The absolute deviations from the median are: - \( |x - \frac{11x}{2}| = |-\frac{9x}{2}| = \frac{9|x|}{2} \) - \( |2x - \frac{11x}{2}| = |-\frac{7x}{2}| = \frac{7|x|}{2} \) - \( |3x - \frac{11x}{2}| = |-\frac{5x}{2}| = \frac{5|x|}{2} \) - \( |4x - \frac{11x}{2}| = |-\frac{3x}{2}| = \frac{3|x|}{2} \) - \( |5x - \frac{11x}{2}| = |-\frac{x}{2}| = \frac{|x|}{2} \) - \( |6x - \frac{11x}{2}| = |\frac{x}{2}| = \frac{|x|}{2} \) - \( |7x - \frac{11x}{2}| = |\frac{3x}{2}| = \frac{3|x|}{2} \) - \( |8x - \frac{11x}{2}| = |\frac{5x}{2}| = \frac{5|x|}{2} \) - \( |9x - \frac{11x}{2}| = |\frac{7x}{2}| = \frac{7|x|}{2} \) - \( |10x - \frac{11x}{2}| = |\frac{9x}{2}| = \frac{9|x|}{2} \) 4. **Sum of Absolute Deviations**: - The total sum of absolute deviations is: \[ \text{Total} = \frac{9|x|}{2} + \frac{7|x|}{2} + \frac{5|x|}{2} + \frac{3|x|}{2} + \frac{|x|}{2} + \frac{|x|}{2} + \frac{3|x|}{2} + \frac{5|x|}{2} + \frac{7|x|}{2} + \frac{9|x|}{2} \] - This simplifies to: \[ \text{Total} = \frac{9 + 7 + 5 + 3 + 1 + 1 + 3 + 5 + 7 + 9}{2}|x| = \frac{50}{2}|x| = 25|x| \] 5. **Calculate the Mean Deviation**: - The mean deviation is: \[ D = \frac{25|x|}{10} = 2.5|x| \] - We know from the problem statement that \( D = 30 \). Therefore: \[ 2.5|x| = 30 \] 6. **Solve for \( |x| \)**: - Dividing both sides by 2.5: \[ |x| = \frac{30}{2.5} = 12 \] ### Final Answer: Thus, the value of \( |x| \) is \( 12 \).

To solve the problem, we need to find the absolute value of \( x \) given that the mean deviation about the median of the numbers \( x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x \) is 30. ### Step-by-step Solution: 1. **Identify the Numbers**: The numbers given are \( x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x \). 2. **Find the Median**: - Since there are 10 numbers (even count), the median is the average of the 5th and 6th terms. ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If the median of 5,9,11,3,4,x,8 is 6, then x is ………

Write the value of the determinant |[2, 3, 4],[ 5, 6, 8],[ 6x,9x, 12 x]|

Write the value of the determinant |[2, 3, 4], [5, 6, 8], [6x,9x,12x]| .

Find the value of the determinant = |(2, 3, 4),( 5, 6, 8),( 6x,9x ,12 x)|

Find the value of the determinant = |(2, 3, 4) ,(5, 6, 8),( 6x,9x, 12 x)| .

Write the value of the determinant |[2, 3, 4],[ 5, 6 ,8],[ 6x,9x, 12 x]|

Median of (x)/(5), x, (x)/(4), (x)/(2), (x)/(3) is 8. If x gt 0 then value of x is

value of |(2,3,4),(5,6,8),(6x,9x,12x)|

If the mean of the observation x , x+3 , x+5 , x+7 and x+10 is 9 , then mean of the last three observations is

If the median of the data x_(1), x_(2), x_(3), x_(4), x_(5),x_(6), x_(7), x_(8) " is " alpha and x_(1) lt x_(2) lt x_(3) lt x_(4) lt x_(5) lt x_(6) lt x_(7) lt x_(8) , then the median of x_(3), x_(4), x_(5), x_(6) is