Home
Class 12
MATHS
Let f(x)=(x^(2)+2)/([x]),1 le x le3, whe...

Let `f(x)=(x^(2)+2)/([x]),1 le x le3`, where [.] is the greatest integer function. Then the least value of f(x) is

A

f (x) is increasing function

B

f (x) is decreasing function

C

The greatest value of `f(x) is (1)/(3)xx16.21`

D

The least value of f(x) is 2

Text Solution

Verified by Experts

The correct Answer is:
C

Here `f(x)=x^(2)+1,x lt x lt 2`
`(x^(2)+1)/(2),2 le x le 3 " " (x^(2)+1)/(3), 3 le x le 3.9`
`f.(x) gt 0` in each of the intervals and so f(x) is increasing in each of the intervals
`:.2 lt f(x) lt 5 "in" 1 le x lt 2, (5)/(2) le f(x) lt "in" 2 le x lt , (10)/(3) le f(x) le (1)/(3) xx 16.21 "in" 3 le x le 3.9`
Hence, the greatest value is `(1)/(3)xx16.21`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then A. (a)f (x) is increasing function B. f (x) is decreasing function C. The greatest value of f (x) is (1)/(3)xx16.21 D. The least value of f (x) is 2

Let f(x)={1+|x|,x<-1[x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2.3)}dot

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Draw the graph of the function f(x) = x-|x2-x| -1 le x le 1 , where [*] denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be