Home
Class 12
MATHS
If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1...

If `f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x)))` where `x in (0, 1/2)` , then `f'(x)` has the value equal to (i) `2/(xsqrt(1-x))` (ii) `0` (iii) `-2/(xsqrt(1-x))` (iv) `pi`

A

`(2)/(sqrt(x(-1)))`

B

Zero

C

`-(2)/(sqrt(x(-1)))`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(x) \) for the function \[ f(x) = 2 \sin^{-1}(\sqrt{1-x}) + \sin^{-1}(2 \sqrt{x(1-x)}) \] where \( x \in (0, \frac{1}{2}) \), we will follow these steps: ### Step 1: Analyze the Function The function consists of two parts: \( 2 \sin^{-1}(\sqrt{1-x}) \) and \( \sin^{-1}(2 \sqrt{x(1-x)}) \). We need to differentiate both parts with respect to \( x \). ### Step 2: Differentiate the First Part Using the chain rule, the derivative of \( \sin^{-1}(u) \) is given by \( \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \). Let \( u = \sqrt{1-x} \). Then, \[ \frac{du}{dx} = \frac{-1}{2\sqrt{1-x}}. \] Now, differentiating the first part: \[ \frac{d}{dx}[2 \sin^{-1}(\sqrt{1-x})] = 2 \cdot \frac{1}{\sqrt{1 - (1-x)}} \cdot \frac{-1}{2\sqrt{1-x}} = \frac{-1}{\sqrt{x(1-x)}}. \] ### Step 3: Differentiate the Second Part Now, consider the second part \( \sin^{-1}(2 \sqrt{x(1-x)}) \). Let \( v = 2 \sqrt{x(1-x)} \). Then, \[ \frac{dv}{dx} = 2 \cdot \frac{1}{2\sqrt{x(1-x)}} \cdot (1 - 2x) = \frac{1 - 2x}{\sqrt{x(1-x)}}. \] Now, differentiating the second part: \[ \frac{d}{dx}[\sin^{-1}(2\sqrt{x(1-x)})] = \frac{1}{\sqrt{1 - (2\sqrt{x(1-x)})^2}} \cdot \frac{dv}{dx}. \] Calculating \( (2\sqrt{x(1-x)})^2 = 4x(1-x) \), we have: \[ 1 - 4x(1-x) = 1 - 4x + 4x^2 = (1-2x)^2. \] Thus, \[ \sqrt{1 - (2\sqrt{x(1-x)})^2} = |1-2x|. \] Since \( x \in (0, \frac{1}{2}) \), \( 1-2x > 0 \), so: \[ \sqrt{1 - (2\sqrt{x(1-x)})^2} = 1 - 2x. \] Now, we can write the derivative of the second part: \[ \frac{d}{dx}[\sin^{-1}(2\sqrt{x(1-x)})] = \frac{1}{1-2x} \cdot \frac{1 - 2x}{\sqrt{x(1-x)}} = \frac{1}{\sqrt{x(1-x)}}. \] ### Step 4: Combine the Derivatives Now, we combine the derivatives of both parts: \[ f'(x) = \frac{-1}{\sqrt{x(1-x)}} + \frac{1}{\sqrt{x(1-x)}} = 0. \] ### Conclusion Thus, the value of \( f'(x) \) is: \[ f'(x) = 0. \] ### Final Answer The correct option is (ii) \( 0 \).

To find the value of \( f'(x) \) for the function \[ f(x) = 2 \sin^{-1}(\sqrt{1-x}) + \sin^{-1}(2 \sqrt{x(1-x)}) \] where \( x \in (0, \frac{1}{2}) \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

Prove 2sin^(-1)x=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))

If sin ^(-1) x=(1)/(3) , then evaluate sin ^(-1) (2xsqrt(1-x^(2)))

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Evaluate int_(0)^(1)1/(sqrt(1-x^(2))"sin"^(-1)(2xsqrt(1-x^(2)))dx .