Home
Class 12
MATHS
If Real ((2z-1)/(z+1))=1, then locus of ...

If Real `((2z-1)/(z+1))`=1, then locus of z is , where z=x+iy and `i=sqrt(-1)`

A

circle

B

parabola

C

Sr.line

D

Pair of St. lines

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the locus of \( z \) given that the real part of \( \frac{2z - 1}{z + 1} = 1 \), where \( z = x + iy \). ### Step-by-Step Solution: 1. **Substitute \( z \)**: \[ z = x + iy \] Substitute this into the expression: \[ \frac{2z - 1}{z + 1} = \frac{2(x + iy) - 1}{(x + iy) + 1} \] 2. **Simplify the expression**: \[ = \frac{2x + 2iy - 1}{x + 1 + iy} = \frac{(2x - 1) + 2iy}{(x + 1) + iy} \] 3. **Multiply by the conjugate of the denominator**: To separate the real and imaginary parts, multiply the numerator and denominator by the conjugate of the denominator: \[ = \frac{((2x - 1) + 2iy)((x + 1) - iy)}{((x + 1) + iy)((x + 1) - iy)} \] 4. **Calculate the denominator**: \[ = (x + 1)^2 + y^2 \] 5. **Calculate the numerator**: Expanding the numerator: \[ = (2x - 1)(x + 1) - (2y^2) + i((2y)(x + 1) - (2x - 1)y) \] This simplifies to: \[ = (2x^2 + 2x - x - 1 - 2y^2) + i(2xy + 2y - 2xy + y) \] \[ = (2x^2 + x - 1 - 2y^2) + i(y + 2y) \] 6. **Separate real and imaginary parts**: The real part is: \[ \frac{2x^2 + x - 1 - 2y^2}{(x + 1)^2 + y^2} \] The imaginary part is: \[ \frac{(y + 2y)}{(x + 1)^2 + y^2} \] 7. **Set the real part equal to 1**: From the problem statement: \[ \frac{2x^2 + x - 1 - 2y^2}{(x + 1)^2 + y^2} = 1 \] 8. **Cross-multiply**: \[ 2x^2 + x - 1 - 2y^2 = (x + 1)^2 + y^2 \] 9. **Expand and rearrange**: Expanding the right-hand side: \[ 2x^2 + x - 1 - 2y^2 = x^2 + 2x + 1 + y^2 \] Rearranging gives: \[ 2x^2 - x^2 + x - 2x - 1 - 1 + 2y^2 - y^2 = 0 \] This simplifies to: \[ x^2 - x + y^2 - 2 = 0 \] 10. **Rearranging to standard form**: \[ x^2 + y^2 - x - 2 = 0 \] Completing the square for \( x \): \[ (x - \frac{1}{2})^2 + y^2 = \frac{9}{4} \] ### Conclusion: The locus of \( z \) is a circle with center \( \left(\frac{1}{2}, 0\right) \) and radius \( \frac{3}{2} \).

To solve the problem, we need to find the locus of \( z \) given that the real part of \( \frac{2z - 1}{z + 1} = 1 \), where \( z = x + iy \). ### Step-by-Step Solution: 1. **Substitute \( z \)**: \[ z = x + iy \] ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos

Similar Questions

Explore conceptually related problems

If Imz((z-1)/(2z+1))=-4 , then locus of z is

If z=x+iy and real part ((z-1)/(2z+i))=1 then locus of z is

If arg(z-1)=arg(z+2i) , then find (x-1):y , where z=x+iy

If arg(z-1)=arg(z+3i) , then find (x-1):y , where z=x+iy .

If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2 , then the locus of z is

If log_(sqrt3) |(|z|^2 -|z| +1|)/(|z|+2)|<2 then locus of z is

If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1 , find the locus of z in the complex plane

If z = x + iy, x , y in R , then the louts Im (( z - 2 ) /(z + i)) = (1 ) /(2) represents : ( where i= sqrt ( - 1))

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If the real part of (z +2)/(z -1) is 4, then show that the locus of he point representing z in the complex plane is a circle.