Home
Class 12
MATHS
int(a^4)^(b^4)(f(sqrtx))/((sqrtx)[f(a^2+...

`int_(a^4)^(b^4)(f(sqrtx))/((sqrtx)[f(a^2+b^2-sqrtx)+f(sqrtx)])dx` is equal to

A

`a^(2)-b^(2)`

B

`b^(2)-a^(2)`

C

0

D

`a^(2)+b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{a^4}^{b^4} \frac{f(\sqrt{x})}{\sqrt{x} \left( f(a^2 + b^2 - \sqrt{x}) + f(\sqrt{x}) \right)} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( \sqrt{x} = t \). Then, \( x = t^2 \) and \( dx = 2t \, dt \). The limits change as follows: - When \( x = a^4 \), \( t = a^2 \). - When \( x = b^4 \), \( t = b^2 \). Thus, we can rewrite the integral as: \[ I = \int_{a^2}^{b^2} \frac{f(t)}{t \left( f(a^2 + b^2 - t) + f(t) \right)} \cdot 2t \, dt. \] ### Step 2: Simplifying the Integral The \( t \) in the numerator and denominator cancels out: \[ I = 2 \int_{a^2}^{b^2} \frac{f(t)}{f(a^2 + b^2 - t) + f(t)} \, dt. \] ### Step 3: Using the Property of Integrals We can use the property of integrals which states: \[ \int_a^b f(x) \, dx = \int_a^b f(b + a - x) \, dx. \] Applying this property, we have: \[ I = 2 \int_{a^2}^{b^2} \frac{f(b^2 + a^2 - t)}{f(t) + f(b^2 + a^2 - t)} \, dt. \] ### Step 4: Adding the Two Integrals Now, we can add the two expressions for \( I \): \[ 2I = 2 \int_{a^2}^{b^2} \frac{f(t)}{f(a^2 + b^2 - t) + f(t)} \, dt + 2 \int_{a^2}^{b^2} \frac{f(b^2 + a^2 - t)}{f(t) + f(b^2 + a^2 - t)} \, dt. \] This gives us: \[ 2I = 2 \int_{a^2}^{b^2} dt = 2(b^2 - a^2). \] ### Step 5: Solving for \( I \) Dividing both sides by 2, we find: \[ I = b^2 - a^2. \] ### Conclusion Thus, the value of the integral is: \[ \boxed{b^2 - a^2}. \]

To solve the integral \[ I = \int_{a^4}^{b^4} \frac{f(\sqrt{x})}{\sqrt{x} \left( f(a^2 + b^2 - \sqrt{x}) + f(\sqrt{x}) \right)} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos

Similar Questions

Explore conceptually related problems

int (1)/(x+sqrtx) dx is equal to

int e^(sqrtx) dx

int (a^sqrtx)/(sqrtx) dx equals

int_(1)^(2)(dx)/(sqrtx-sqrt(x-1))

(d)/(dx)(sqrtx+(1)/(sqrtx))^2=

int (1/sqrtx-sqrtx)dx

y= log(sqrtx+1/sqrtx)

int ((2+sqrtx)dx )/((x+1+sqrtx)^(2)) is equal to:

lim_(xrarr0^+) (sqrtx)/(sqrt(4-sqrtx)-sqrtx)

int (1-x) sqrtx dx