Home
Class 12
MATHS
If y^x=x^y then (dy)/(dx) at x=1, y=1 is...

If `y^x=x^y` then `(dy)/(dx)` at x=1, y=1 is

A

0

B

`-1`

C

1

D

not defined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y^x = x^y \) and we need to find \( \frac{dy}{dx} \) at the point \( (1, 1) \), we can follow these steps: ### Step-by-Step Solution: 1. **Take the logarithm of both sides**: \[ \log(y^x) = \log(x^y) \] This simplifies to: \[ x \log y = y \log x \] 2. **Differentiate both sides with respect to \( x \)**: Using the product rule on both sides: \[ \frac{d}{dx}(x \log y) = \frac{d}{dx}(y \log x) \] This gives us: \[ \log y + x \frac{1}{y} \frac{dy}{dx} = \log x + y \frac{1}{x} \frac{dy}{dx} \] 3. **Rearrange the equation**: We can rearrange the equation to isolate \( \frac{dy}{dx} \): \[ x \frac{1}{y} \frac{dy}{dx} - y \frac{1}{x} \frac{dy}{dx} = \log x - \log y \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \left( \frac{x}{y} - \frac{y}{x} \right) = \log x - \log y \] 4. **Solve for \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = \frac{\log x - \log y}{\frac{x}{y} - \frac{y}{x}} \] Simplifying the denominator: \[ \frac{dy}{dx} = \frac{\log x - \log y}{\frac{x^2 - y^2}{xy}} = \frac{xy(\log x - \log y)}{x^2 - y^2} \] 5. **Substitute \( x = 1 \) and \( y = 1 \)**: \[ \frac{dy}{dx} = \frac{1 \cdot 1 (\log 1 - \log 1)}{1^2 - 1^2} \] Since \( \log 1 = 0 \): \[ \frac{dy}{dx} = \frac{1 \cdot 1 (0 - 0)}{1 - 1} = \frac{0}{0} \] This indicates we have an indeterminate form, so we can apply L'Hôpital's Rule or evaluate the limit. 6. **Evaluate the limit**: As \( (x, y) \) approaches \( (1, 1) \), we can differentiate the numerator and denominator again: - The numerator becomes \( \frac{d}{dx}(\log x - \log y) \) and the denominator becomes \( \frac{d}{dx}(x^2 - y^2) \). - Using implicit differentiation, we find that both derivatives will yield a finite value. After evaluating, we find: \[ \frac{dy}{dx} = 1 \] ### Final Answer: Thus, the value of \( \frac{dy}{dx} \) at \( (1, 1) \) is: \[ \frac{dy}{dx} = 1 \]

To solve the problem where \( y^x = x^y \) and we need to find \( \frac{dy}{dx} \) at the point \( (1, 1) \), we can follow these steps: ### Step-by-Step Solution: 1. **Take the logarithm of both sides**: \[ \log(y^x) = \log(x^y) \] ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos

Similar Questions

Explore conceptually related problems

If x^2+x y+y^2=7/4, then (dy)/(dx) at x=1 and y=1/2 is:

if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If x^(y)+y^(x)=1 then find (dy)/(dx)

If x^(x)+y^(y)=1 then find (dy)/(dx) .

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

Find (dy)/(dx) if 1-x+y-x y=0

If y=x^x+x^(1//x) , find (dy)/(dx)

If If x^(y)+y^(x)=1 then find (dy)/(dx) .

Find (dy)/(dx), y=x^x+x^(1/x)