Home
Class 12
MATHS
If veca=hati+hatj+hatk & vecB=hati-hatj+...

If `veca=hati+hatj+hatk` & `vecB=hati-hatj+hatk` are the sides of AB & AC of `/_\ABC` if AD is the angle bisector of `angleBAC` where D lies on BC, then length of AD is

A

1

B

`sqrt2`

C

`sqrt3`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the angle bisector \( AD \) in triangle \( ABC \) where \( \vec{A} = \hat{i} + \hat{j} + \hat{k} \) and \( \vec{B} = \hat{i} - \hat{j} + \hat{k} \), we will follow these steps: ### Step 1: Identify the vectors We have: - \( \vec{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \vec{B} = \hat{i} - \hat{j} + \hat{k} \) ### Step 2: Calculate the lengths of the vectors To find the lengths of \( \vec{A} \) and \( \vec{B} \): \[ |\vec{A}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] \[ |\vec{B}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3} \] ### Step 3: Find the cosine of the angle between the vectors The cosine of the angle \( \theta \) between the vectors \( \vec{A} \) and \( \vec{B} \) is given by: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \] Calculating the dot product: \[ \vec{A} \cdot \vec{B} = (1)(1) + (1)(-1) + (1)(1) = 1 - 1 + 1 = 1 \] Thus, \[ \cos \theta = \frac{1}{\sqrt{3} \cdot \sqrt{3}} = \frac{1}{3} \] ### Step 4: Find \( \theta \) Using the cosine value, we can find \( \theta \) using the inverse cosine function: \[ \theta = \cos^{-1}\left(\frac{1}{3}\right) \] ### Step 5: Find \( \cos \frac{\theta}{2} \) Using the half-angle formula: \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 + \frac{1}{3}}{2}} = \sqrt{\frac{\frac{4}{3}}{2}} = \sqrt{\frac{2}{3}} \] ### Step 6: Calculate the length of the angle bisector \( AD \) The length of the angle bisector \( AD \) can be calculated using the formula: \[ AD = \frac{2 |\vec{A}| |\vec{B}|}{|\vec{A}| + |\vec{B}|} \cos \frac{\theta}{2} \] Substituting the values: \[ AD = \frac{2 \cdot \sqrt{3} \cdot \sqrt{3}}{\sqrt{3} + \sqrt{3}} \cdot \sqrt{\frac{2}{3}} = \frac{2 \cdot 3}{2\sqrt{3}} \cdot \sqrt{\frac{2}{3}} = \frac{3}{\sqrt{3}} \cdot \sqrt{\frac{2}{3}} = \sqrt{3} \cdot \sqrt{\frac{2}{3}} = \sqrt{2} \] ### Final Answer The length of \( AD \) is \( \sqrt{2} \). ---

To find the length of the angle bisector \( AD \) in triangle \( ABC \) where \( \vec{A} = \hat{i} + \hat{j} + \hat{k} \) and \( \vec{B} = \hat{i} - \hat{j} + \hat{k} \), we will follow these steps: ### Step 1: Identify the vectors We have: - \( \vec{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \vec{B} = \hat{i} - \hat{j} + \hat{k} \) ### Step 2: Calculate the lengths of the vectors ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA X vecB| will be

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of veca on vecb

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of vecb on veca

If vecA=2hati-3hatj+hatk and vecB=3hati+2hatj. Find vecA.vecB and vecAxxvecB

If vecA= (2hati + 3hatj + 5hatk) and vecB = (hati+ 6hatj+6hatk) , then projection of vecA on vecB would be