Home
Class 12
MATHS
underset(xtoe)lim(lnx-1)/(x-e) is...

`underset(xtoe)lim(lnx-1)/(x-e)` is

A

e

B

`(1)/(e)`

C

`e^(2)`

D

`(1)/(e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

`(ln((x)/(e)))/(e((x)/(e)-1))," Let "(x)/(e)-1=t" "rArr underset(trarr0)(lim)(ln(1+t))/(et)=(1)/(e)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos

Similar Questions

Explore conceptually related problems

lim_(x->e) (lnx-1)/(x-e)

Evaluate underset(x to oo) lim ([x])/(2x)

If underset(xto0)lim(f(x))/(sin^(2)x)=8,underset(xto0)lim(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " underset(xto0)lim(1+2f(x))^((1)/(g(x)))=(1)/(e)," then" The value of lamda is

Evaluate underset(xto1)lim(a^(x-1)-1)/(sinpix).

underset(xrarr0)(lim)(sinnx)/x is equal to

Evaluate underset(xto3)"lim"((x^(2)-9))/((x-3))

Evaluate: underset(xrarr0)lim((1-x)^n-1)/(x)

Evaluate underset(xto pi//2)lim(sinx-(sinx)^(sinx))/(1-sinx+log_(e)sinx) .

Let f : R to [0,oo)" be such that "underset(x to 5)lim f(x)" exists and "underset(x to 5)lim ([f(x)]^(2)-9)/(sqrt(|x-5|))=0." Then "underset(x to 5)lim f(x) is equal to:

Evaluate : underset( x to 0 ) lim (x) ^((1)/(log x))