Home
Class 12
MATHS
Let vec(a) = hat(i) - 2hat(j) + 2hat(k) ...

Let `vec(a) = hat(i) - 2hat(j) + 2hat(k)` and `vec(b) = 2hat(i) - hat(j) + hat(k)` be two vectors. If `vec(c)` is a vector such that `vec(b) xx vec(c) = vec(b) xx vec(a)` and `vec(c).vec(a) = 1`, then `vec(c).vec(b)` is equal to :

A

1

B

`-1`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given information and derive the required value of \(\vec{c} \cdot \vec{b}\). ### Given: - \(\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}\) - \(\vec{b} = 2\hat{i} - \hat{j} + \hat{k}\) ### Step 1: Use the given condition \(\vec{b} \times \vec{c} = \vec{b} \times \vec{a}\) From the equation \(\vec{b} \times \vec{c} = \vec{b} \times \vec{a}\), we can rearrange it as: \[ \vec{b} \times \vec{c} - \vec{b} \times \vec{a} = 0 \] This implies that: \[ \vec{b} \times (\vec{c} - \vec{a}) = 0 \] Since the cross product of two vectors is zero, it indicates that \(\vec{b}\) is parallel to \(\vec{c} - \vec{a}\). Therefore, we can express this relationship as: \[ \vec{b} = \lambda (\vec{c} - \vec{a}) \] for some scalar \(\lambda\). ### Step 2: Take the dot product with \(\vec{a}\) Now, we take the dot product of both sides with \(\vec{a}\): \[ \vec{a} \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{c} - \vec{a} \cdot \vec{a}) \] Given that \(\vec{a} \cdot \vec{c} = 1\), we can substitute this into the equation: \[ \vec{a} \cdot \vec{b} = \lambda (1 - \vec{a} \cdot \vec{a}) \] ### Step 3: Calculate \(\vec{a} \cdot \vec{b}\) and \(\vec{a} \cdot \vec{a}\) First, we calculate \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = (1)(2) + (-2)(-1) + (2)(1) = 2 + 2 + 2 = 6 \] Next, we calculate \(\vec{a} \cdot \vec{a}\): \[ \vec{a} \cdot \vec{a} = (1)^2 + (-2)^2 + (2)^2 = 1 + 4 + 4 = 9 \] ### Step 4: Substitute back to find \(\lambda\) Now substituting these values back into the equation: \[ 6 = \lambda (1 - 9) \] This simplifies to: \[ 6 = \lambda (-8) \] Thus, we find: \[ \lambda = -\frac{3}{4} \] ### Step 5: Express \(\vec{c}\) in terms of \(\vec{b}\) and \(\vec{a}\) Now we can substitute \(\lambda\) back into the expression for \(\vec{b}\): \[ \vec{b} = -\frac{3}{4} (\vec{c} - \vec{a}) \] Rearranging gives: \[ \vec{c} = -\frac{4}{3} \vec{b} + \vec{a} \] ### Step 6: Find \(\vec{c} \cdot \vec{b}\) Now we need to find \(\vec{c} \cdot \vec{b}\): \[ \vec{c} \cdot \vec{b} = \left(-\frac{4}{3} \vec{b} + \vec{a}\right) \cdot \vec{b} \] Distributing the dot product: \[ \vec{c} \cdot \vec{b} = -\frac{4}{3} (\vec{b} \cdot \vec{b}) + \vec{a} \cdot \vec{b} \] ### Step 7: Calculate \(\vec{b} \cdot \vec{b}\) Now we calculate \(\vec{b} \cdot \vec{b}\): \[ \vec{b} \cdot \vec{b} = (2)^2 + (-1)^2 + (1)^2 = 4 + 1 + 1 = 6 \] ### Step 8: Substitute back to find \(\vec{c} \cdot \vec{b}\) Now substituting back: \[ \vec{c} \cdot \vec{b} = -\frac{4}{3} (6) + 6 \] This simplifies to: \[ \vec{c} \cdot \vec{b} = -8 + 6 = -2 \] ### Final Answer: Thus, \(\vec{c} \cdot \vec{b} = -2\).

To solve the problem step by step, we will follow the given information and derive the required value of \(\vec{c} \cdot \vec{b}\). ### Given: - \(\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}\) - \(\vec{b} = 2\hat{i} - \hat{j} + \hat{k}\) ### Step 1: Use the given condition \(\vec{b} \times \vec{c} = \vec{b} \times \vec{a}\) ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

Let vec(a)=hat(i)+4 hat(j)+2hat(k), vec(b)=3 hat(i)-2 hat(j)+7 hat(k) and vec(c)=2hat(i)-hat(j)+4hat(k) . Find a vector vec(p) which is perpendicular to both vec(a) and vec(b) and vec(p). vec(c)=18 .

Given, vec(a)= 3hat(i) - hat(j) and vec(b)= 2hat(i) + hat(j) - 3hat(k) . Express vec(b) = vec(b)_(1) + vec(b)_(2) where vec(b)_(1) is parallel to vec(a) and vec(b)_(2) is perpendicular to vec(a)