Home
Class 12
MATHS
If I= underset(1)overset(2)(int)log(11)(...

If `I= underset(1)overset(2)(int)log_(11)(x^3 - x^2 + 6x -5)` dx, then:

A. `0 lt I lt 1/2`
B. `-1ltIlt1/2`
C. `-1ltIlt0`
D. `0lt Ilt 1`

A

`0 lt I lt (1)/(2)`

B

`-1 lt I lt (1)/(2)`

C

`-1 lt I lt 0`

D

`0 lt I lt 1`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(x) = log_(11) (x^3 - x^2 + 6x - 5)`
`therefore f(X)` is increasing in (1,2) therefore `0 lt f(x) lt 1`
`0 lt I lt 1`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

If I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx then

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If log_(0.3) (x - 1) lt log_(0.09) (x - 1) , then x lies in the interval

Let x_(1) lt x_(2) lt x_(3) lt x_(4) lt x_(5) and y_(1) lt y_(2) lt y_(3) lt y_(4) lt y_(5) are in AP such that underset(I = 1)overset(5)(sum) x_(i) = underset(I = 1)overset(5)(sum) y_(i) = 25 and underset(I =1)overset(5)(II) x_(i) = underset(I = 1)overset(5)(II) y_(i) = 0 then |y_(5) - x_(5)| A. 5//2 B. 5 C. 10 D. 15

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1 find dy/dx

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^2)/(1+x^2)) , 0 lt x lt 1

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sqrt(1+x))dx lt 1/10 , (ii) 1/2 ln 2 lt int_(0)^(1)(tanx)/(1+x^(2))dx lt (pi)/(2)