Home
Class 12
MATHS
Let f:(1,3) to R be a function defined ...

Let `f:(1,3) to R` be a function defined by `f(x)=(x[x])/(1+x)` , where [x] denotes the greatest integer `le x` . Then the range of f is :

A

`((1)/(2),(3)/(2))`

B

`((1)/(2),1) cup [(4)/(3),infty)`

C

`((1)/(2),(2)/(3)) cup [(4)/(2),(3)/(2))`

D

`(1,(4)/(3)]`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x) ={{:(x/(1+x), , ,x in (1,2)),((2x)/(x+1), ,, x in [1,3)):}`
`f(x)` is increasing function `therefore f(x) in (1/2 ,2/3) uu [4/3 ,3/2)`
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 7

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 6

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 8

    VMC MODULES ENGLISH|Exercise MATHMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The function of f:R to R , defined by f(x)=[x] , where [x] denotes the greatest integer less than or equal to x, is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R , where [x] is the greatest integer not exceeding x, then the range of f is

Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to