Home
Class 12
MATHS
If e^(x + y) = y^2 then (d^2y)/(dx^2) at...

If `e^(x + y) = y^2` then `(d^2y)/(dx^2)` at (`-1, 1`) is equal to :

A

2

B

1

C

`-1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) at the point \((-1, 1)\) given the equation \(e^{x+y} = y^2\), we will follow these steps: ### Step 1: Take the natural logarithm of both sides Start with the equation: \[ e^{x+y} = y^2 \] Taking the natural logarithm on both sides gives: \[ \ln(e^{x+y}) = \ln(y^2) \] Using the property \(\ln(e^a) = a\) and \(\ln(a^b) = b \ln(a)\), we can simplify this to: \[ x + y = 2 \ln(y) \] ### Step 2: Differentiate both sides with respect to \(x\) Now, differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x + y) = \frac{d}{dx}(2 \ln(y)) \] This gives: \[ 1 + \frac{dy}{dx} = 2 \cdot \frac{1}{y} \cdot \frac{dy}{dx} \] Rearranging this, we have: \[ 1 + \frac{dy}{dx} = \frac{2}{y} \frac{dy}{dx} \] ### Step 3: Solve for \(\frac{dy}{dx}\) Rearranging the equation: \[ 1 = \frac{2}{y} \frac{dy}{dx} - \frac{dy}{dx} \] Factoring out \(\frac{dy}{dx}\): \[ 1 = \left(\frac{2}{y} - 1\right) \frac{dy}{dx} \] Thus, \[ \frac{dy}{dx} = \frac{1}{\frac{2}{y} - 1} = \frac{y}{2 - y} \] ### Step 4: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now we need to differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{y}{2 - y}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(2 - y) \frac{dy}{dx} - y \left(-\frac{dy}{dx}\right)}{(2 - y)^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{(2 - y) \frac{dy}{dx} + y \frac{dy}{dx}}{(2 - y)^2} = \frac{2 \frac{dy}{dx}}{(2 - y)^2} \] ### Step 5: Substitute \((-1, 1)\) into the derivatives At the point \((-1, 1)\): 1. Calculate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{1}{2 - 1} = 1 \] 2. Substitute this into the second derivative: \[ \frac{d^2y}{dx^2} = \frac{2 \cdot 1}{(2 - 1)^2} = \frac{2}{1^2} = 2 \] ### Conclusion Thus, the value of \(\frac{d^2y}{dx^2}\) at the point \((-1, 1)\) is: \[ \boxed{2} \]

To find the second derivative \(\frac{d^2y}{dx^2}\) at the point \((-1, 1)\) given the equation \(e^{x+y} = y^2\), we will follow these steps: ### Step 1: Take the natural logarithm of both sides Start with the equation: \[ e^{x+y} = y^2 \] Taking the natural logarithm on both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If y=a e^(m x)+b e^(-m x), then (d^(2y))/(dx^2) is equals to

if y=(A+Bx)e^(mx)+(m-1)^-1 e^x then (d^2y)/(dx^2)-2m(dy)/(dx)+m^2y is equal to:

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=cos^(-1)x ,find (d^2y)/(dx^2) .

If y=log((x^(2))/(e^(2))) then (d^(2)y)/(dx^(2)) equal to: a) -(1)/(x) b) -(1)/(x^(2)) c) (2)/(x^(2)) d) -(2)/(x^(2))

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to (a) n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y n y (d) n^2y