Home
Class 12
MATHS
The value of int(-20pi)^(20 pi) |sin x| ...

The value of `int_(-20pi)^(20 pi) |sin x| [ sin x] dx` is (where [.] denotes greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-20\pi}^{20\pi} |\sin x| \lfloor \sin x \rfloor \, dx \), where \( \lfloor \cdot \rfloor \) denotes the greatest integer function, we can follow these steps: ### Step 1: Analyze the function The sine function, \( \sin x \), is periodic with a period of \( 2\pi \). Therefore, we can simplify the integral by taking advantage of this periodicity. ### Step 2: Break the integral into intervals Given the periodic nature of the sine function, we can express the integral over one period and then multiply by the number of periods in the interval \([-20\pi, 20\pi]\): \[ I = \int_{-20\pi}^{20\pi} |\sin x| \lfloor \sin x \rfloor \, dx = 10 \int_{0}^{2\pi} |\sin x| \lfloor \sin x \rfloor \, dx \] This is because there are \( 20\pi / 2\pi = 10 \) complete periods of \( \sin x \) in the interval. ### Step 3: Evaluate the integral over one period Next, we need to evaluate: \[ \int_{0}^{2\pi} |\sin x| \lfloor \sin x \rfloor \, dx \] In the interval \( [0, 2\pi] \), \( \sin x \) is non-negative from \( 0 \) to \( \pi \) and non-positive from \( \pi \) to \( 2\pi \). The greatest integer function \( \lfloor \sin x \rfloor \) will be: - \( 0 \) for \( 0 \leq x < \frac{\pi}{2} \) - \( 1 \) for \( \frac{\pi}{2} \leq x < \pi \) - \( 0 \) for \( \pi < x < \frac{3\pi}{2} \) - \( -1 \) for \( \frac{3\pi}{2} < x < 2\pi \) Thus, we can break the integral into parts: \[ \int_{0}^{2\pi} |\sin x| \lfloor \sin x \rfloor \, dx = \int_{0}^{\frac{\pi}{2}} |\sin x| \cdot 0 \, dx + \int_{\frac{\pi}{2}}^{\pi} |\sin x| \cdot 1 \, dx + \int_{\pi}^{\frac{3\pi}{2}} |\sin x| \cdot 0 \, dx + \int_{\frac{3\pi}{2}}^{2\pi} |\sin x| \cdot (-1) \, dx \] ### Step 4: Evaluate each part 1. \( \int_{0}^{\frac{\pi}{2}} |\sin x| \cdot 0 \, dx = 0 \) 2. \( \int_{\frac{\pi}{2}}^{\pi} |\sin x| \cdot 1 \, dx = \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx = [-\cos x]_{\frac{\pi}{2}}^{\pi} = -(-1 - 0) = 1 \) 3. \( \int_{\pi}^{\frac{3\pi}{2}} |\sin x| \cdot 0 \, dx = 0 \) 4. \( \int_{\frac{3\pi}{2}}^{2\pi} |\sin x| \cdot (-1) \, dx = -\int_{\frac{3\pi}{2}}^{2\pi} \sin x \, dx = -[-\cos x]_{\frac{3\pi}{2}}^{2\pi} = -(-1 - 0) = -1 \) ### Step 5: Combine the results Now, combining these results: \[ \int_{0}^{2\pi} |\sin x| \lfloor \sin x \rfloor \, dx = 0 + 1 + 0 - 1 = 0 \] ### Step 6: Multiply by the number of periods Thus, the total integral is: \[ I = 10 \cdot 0 = 0 \] ### Final Answer The value of \( \int_{-20\pi}^{20\pi} |\sin x| \lfloor \sin x \rfloor \, dx \) is \( \boxed{0} \).

To solve the integral \( I = \int_{-20\pi}^{20\pi} |\sin x| \lfloor \sin x \rfloor \, dx \), where \( \lfloor \cdot \rfloor \) denotes the greatest integer function, we can follow these steps: ### Step 1: Analyze the function The sine function, \( \sin x \), is periodic with a period of \( 2\pi \). Therefore, we can simplify the integral by taking advantage of this periodicity. ### Step 2: Break the integral into intervals Given the periodic nature of the sine function, we can express the integral over one period and then multiply by the number of periods in the interval \([-20\pi, 20\pi]\): \[ ...
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 2

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION - 2)|10 Videos
  • MOCK TEST 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS( SECTION-2)|5 Videos
  • MOCK TEST 3

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^(12pi) ([sint]+[-sint])dt is equal to (where [.] denotes the greatest integer function )

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

If k in N and I_(k)=int_(-2kp)^(2kpi) |sin x|[sin x]dx , where [.] denotes the greatest integer function, then int_(k=1)^(100) I_(k) equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)